Large Language Models: From Theory to Production (2026. Approx. 300 p. 235 mm)

個数:
  • 予約

Large Language Models: From Theory to Production (2026. Approx. 300 p. 235 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783032131454

Full Description

This book provides a technically rigorous yet accessible guide to Large Language Models (LLMs), charting their evolution from academic research projects into critical infrastructure for industries as diverse as finance, healthcare, and law. It offers readers a strong grounding in the conceptual foundations of machine learning and deep neural networks before moving into the architectures and methods that define today's LLMs, including Transformers, tokenization strategies, and pre-training dynamics.

Building on these foundations, the volume engages with the three central frontiers of LLM research: reasoning, alignment, and deployment. It examines structured reasoning approaches such as Tree of Thoughts and multi-agent systems, explores mechanisms for responsible alignment including reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO), and provides practical strategies for large-scale deployment and inference efficiency in cloud environments. Alongside these advanced topics, the book highlights emerging methods like Parameter-Efficient Fine-Tuning (PEFT), Retrieval-Augmented Generation (RAG), and prompting innovations.

Beyond text generation, dedicated chapters address LLMs in specialized and forward-looking domains, such as time series forecasting, domain-specific customization, and multimodal systems that integrate perception, reasoning, and action to form "unified cognitive agents." Written for developers, researchers, students, and policymakers alike, this book functions both as a comprehensive reference and as a forward-looking framework for engaging with the next era of AI-driven systems.

Practical examples throughout make this an essential reference for developers and engineers building intelligent systems; the comprehensive coverage from foundational principles of deep learning and Transformers to advanced, state-of-the-art topics like agentic frameworks, reasoning, and multimodal systems makes it serve as a textbook for students, and a strategic framework for policymakers navigating the AI landscape. 

Contents

1 Introduction to Large Language Models.- 2 Large Language Models Foundations.- 3 Pre-training and datasets Challenges.- 4 Fine-Tuning: Specialization and Techniques.- 5 Building Large Language Models.- 6 Prompt and Context Engineering.- 7 LLM reasoning.- 8 Retrieval in Large Language Models.- 9 The Model Context Protocol.- 10 Large Language Model Agents: Foundations and Engineering Bridge.- 11 Agentic Frameworks (From Theory to Production).- 12 Evaluation of Large Language Models.- 13 Alignment and Safety of Large Language Models.- 14 Deploying LLM solutions: An AWS Example.- 15 Time Series LLMs.- 16 Multimodality.

最近チェックした商品