Harmonic Analysis Techniques for Elliptic Operators : Lecture Notes of the 27th Internet Seminar on Evolution Equations (Operator Theory: Advances and Applications 285) (2026. x, 316 S. X, 316 p. 30 illus., 13 illus. in color. 235 mm)

個数:
  • 予約

Harmonic Analysis Techniques for Elliptic Operators : Lecture Notes of the 27th Internet Seminar on Evolution Equations (Operator Theory: Advances and Applications 285) (2026. x, 316 S. X, 316 p. 30 illus., 13 illus. in color. 235 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9783032130143

Full Description

The study of the Laplacian through the Fourier transform lies at the center of classical harmonic analysis. It is Plancherel's theorem that intimately links square-integrable functions with the theory of weak derivatives and a symbolic calculus for the Laplacian. Examples include Littlewood-Paley inequalities, Riesz transform estimates and Calderón-Zygmund extrapolation. Over the last decades, the quest to generalize these properties to elliptic operators L in divergence form with bounded measurable coefficients has triggered the development of new techniques that led to a surge of spectacular results in elliptic and parabolic PDE theory.

Assuming only undergraduate knowledge in analysis and some background on Hilbert spaces and the Fourier transform, the authors develop the cornerstones of this 'L-adapted Fourier analysis' over 14 consecutive lectures. As they delve deeper into the topic, readers make first encounters with maximal functions, Carleson measures and a T(b) theorem. The lectures culminate in a self-contained presentation of the solution to the Kato conjecture, a challenging problem that resisted solution for 40 years until it was finally solved in 2001.

This book can serve as a fully developed curriculum for a first graduate course in harmonic analysis and PDEs. Based on the 27th Internet Seminar on Evolution Equations, organized by the authors in the 2023/24 academic year, each lecture is enriched with original exercises, detailed solutions, and video presentations guiding through each theorem's proof and offering additional insights.

Contents

Chapter 1. Basics on operator theory.- Chapter 2. Sectorial operators and sesquilinear forms.- Chapter 3. The form method for elliptic operators.- Chapter 4. Fourier analysis and the Laplacian.- Chapter 5. Functional calculus for sectorial operators.- Chapter 6. First applications of functional calculus.- Chapter 7. H ∞-calculus.- Chapter 8. Quadratic estimates vs. functional calculus.- Chapter 9. The Hardy-Littlewood maximal operator.- Chapter 10. Sobolev embeddings.- Chapter 11. Off-diagonal behavior.- Chapter 12. Square roots of elliptic operators.- Chapter 13. The solution of the Kato conjecture: Part I.- Chapter 14. The solution of the Kato conjecture: Part II.

最近チェックした商品