Averaging for Nonlinear Dynamics with Applications and Numerical Bifurcations : Parametric and autoparametric systems, Hamiltonian systems, FPU systems, coupled oscillators and chaos (Applied Mathematical Sciences 223) (2026. x, 301 S. X, 301 p. 77 illus., 57 illus. in color. 235 mm)

個数:
  • 予約

Averaging for Nonlinear Dynamics with Applications and Numerical Bifurcations : Parametric and autoparametric systems, Hamiltonian systems, FPU systems, coupled oscillators and chaos (Applied Mathematical Sciences 223) (2026. x, 301 S. X, 301 p. 77 illus., 57 illus. in color. 235 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9783032127440

Full Description

This book presents a comprehensive and practical survey of averaging methods for differential equations. Combining rigorous theory with applied perspectives, this book serves as both a study text and a reference for mathematicians and scientists in fields such as engineering, physics, and biology.

Divided into two complementary parts, the book begins with Part I, the Toolbox of Averaging Theorems, providing clear definitions, theorem formulations, and foundational results. While mathematicians may be content with existence proofs and qualitative analyses, applied scientists require tools that link theory to real-world problems—an essential motivation for Part II.

Part II explores applications in physics and engineering, blending theory with practice and incorporating numerical bifurcation analysis using tools such as AUTO, Mathematica, and MatCont. Interspersed theoretical interludes provide the background necessary for understanding and applying these methods.

Highlights include:

Hamiltonian systems (Ch. 9), examining resonance phenomena in physics and engineering.

Fermi-Pasta-Ulam chains (Ch. 10), extending fundamental theory.

Parametric excitation (Ch. 11) and dissipation-induced instability (Ch. 13), showcasing classical but lesser-known engineering results.

Coupled oscillators and chaos (Ch. 12), a detailed exploration of complex nonlinear dynamics.

Diffusion and waves (Ch. 14), providing essential guidance while pointing to broader material for further study.

Whether as a reference, teaching aid, or bridge between theory and application, Averaging for Nonlinear Dynamics equips readers with the tools to analyze, approximate, and apply nonlinear systems across a wide range of scientific disciplines.

Contents

Introduction.- First order periodic averaging.- Periodic solutions.- Second order periodic averaging.- First order general averaging.- Approximations on timescales longer than 1/ε.- Averaging over angles.- Averaging for partial differential equations.- Hamiltonian systems.- Fermi-Pasta-Ulam chains.- Parametric and autoparametric oscillations.- Interactions, bifurcations and chaos.- Instability induced by dissipation.- Diffusion and waves.

最近チェックした商品