Application of Machine Learning in Earth Sciences : A Practical Approach (Earth and Environmental Sciences Library)

個数:
  • 予約
  • ポイントキャンペーン

Application of Machine Learning in Earth Sciences : A Practical Approach (Earth and Environmental Sciences Library)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9783032114259

Full Description

This book introduces the reader to applications of machine learning (ML) in Earth Sciences. In detail, it describes the basic application of machine learning algorithms and models and their potential in Earth Sciences. It discusses the use of several tools and software and the typical workflow for ML applications in Earth Sciences. This book provides a comparative analysis of how standard processes and ML algorithms work in several Earth Sciences applications. Case studies from the various fields of Earth Sciences are presented to illustrate how to apply ML and Deep Learning, these include regression, forecasting, time series analysis in Climate studies, classification methods using multi-spectral data clustering, and dimensionality reduction in classification. This book reviews ML/AI models, algorithms, and methods, analyse case studies, and examine methods of application of ML/AI techniques to specific areas of Earth Sciences. It aims to serve all professionals, and researchers, scientists alike in academics, industries, government, and beyond.

Contents

A ConvGRU Deep Learning Algorithm to Forecast global Ionospheric TEC Maps.- Estimation of Daily Air Relative Humidity Using a Novel Outlier-Robust Extreme Learning Machine Model: A Case Study of Two Algerian Locations.- Significance of Machine Learning in Understanding Earth's Magnetosphere and Solar Activity.- Harnessing artificial intelligence for the detection and analysis of microplastics and associated chemicals in the atmosphere.- Application of Machine Learning in Bioremediation and Detection of Pollutants.- Machine Learning for Analysis of Water flow in the Reservoirs and Monitoring of Air quality.- Leveraging AI/ML for the Identification of Ma-rine Organisms.- Application of Machine Learning in River Water Quality Monitoring.- Application of AI/ML in river water quality monitoring.- Deep Neural Network for Water Mapping during Flood from SAR images using Matlab.

最近チェックした商品