Matrix Methods in Data Analysis (Texts in Applied Mathematics)

個数:
  • 予約
  • ポイントキャンペーン

Matrix Methods in Data Analysis (Texts in Applied Mathematics)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9783032113139

Full Description

This textbook offers a fresh and balanced approach to the study of Linear Algebra in the context of modern Data Science. Whereas many existing texts either emphasize theory with little connection to practice or jump straight to applications with minimal mathematical explanation, this book provides equal weight to both foundations and applications.

Designed for undergraduates who have completed a proof-based Linear Algebra course, it introduces concepts and tools from Matrix Analysis that are essential for Data Science and Machine Learning. Topics include:

Vector norms and distances, orthogonality, and projections
Matrix factorizations such as LU, CR, QR, and SVD
Special matrix types: symmetric, positive definite, nonnegative, stochastic, and covariance matrices
Key numerical algorithms, including the QR algorithm and the Power Method

Each chapter is enriched with real-world applications—from Google PageRank and Principal Component Analysis to clustering, dimensionality reduction, and linear regression—highlighting the role of matrix methods in Data Science.

To further support hands-on learning, the book is accompanied by a GitHub repository with Python labs, allowing students to implement the techniques covered and bridge the gap between theory and computation.

With its clear explanations, practical insights, and balance of theory and application, Matrix Methods in Data Analysis is an invaluable resource for courses in applied Linear Algebra, Data Science, and introductory Machine Learning.

Contents

Part I: Linear Algebra And Machine Learning.- Why Should We Care?.- What You May Have Learned Before..- Core Topics.- Supplementary Topics.- Part II: Matrix Multiplication And Partitioned Matrices.- Why Should We Care?.- What You May Have Learned Before.- Core Topics.- Supplementary Topics.- From The Classroom To Real Life.- Part III: Norms, Distances, And Similarities.- Why Should We Care?.- What You May Have Learned Before.- Core Topics.- Supplementary Topics.- From The Classroom To Real Life.- Part IV: The Four Fundamental Subspaces Of A Matrix, And Gram-Matrices.-  Why Should We Care? .- What You May Have Learned Before.- Core Topics.- Supplementary Topics.- From The Classroom To Real Life.- Part V: The Lu Factorization Of A Matrix.- Why Should We Care? .- What You May Have Learned Before.- Core Topics.- Supplementary Topics.- From The Classroom To Real Life.- Part VI: Orthogonality And The Qr Factorization.- Why Should We Care? .- What You May Have Learned Before.- Core Topics.- Supplementary Topics.- From The Classroom To Real Life.- Part VII: Orthogonal Projections And The Least Squares Problem.- Why Should We Care? .- What You May Have Learned Before.- Core Topics.- Supplementary Topics.- From The Classroom To Real Life.- Part VIII: Eigenvalues, Eigenvectors, And Algorithms.- Why Should We Care? .- What You May Have Learned Before.- Core Topics.- Supplementary Topics.- From The Classroom To Real Life.- Part IX: Symmetric And Positive Definite Matrices.- Why Should We Care? .- What You May Have Learned Before.- Core Topics.- Supplementary Topics.- From The Classroom To Real Life.- Part X: Singular Value Decomposition.- Why Should We Care? .- What You May Have Learned Before.- Core Topics.- Supplementary Topics.-From The Classroom To Real Life.- Part XI: Nonnegative Matrices And Perron Theory.- Why Should We Care? .- What You May Have Learned Before.- Core Topics.- Supplementary Topics.- From The Classroom To Real Life.- Index.

最近チェックした商品