Advanced Chemometrics : Unlocking Patterns in Oil Spills (SpringerBriefs in Environmental Science) (2026. Approx. 85 p. 235 mm)

個数:
  • 予約
  • ポイントキャンペーン

Advanced Chemometrics : Unlocking Patterns in Oil Spills (SpringerBriefs in Environmental Science) (2026. Approx. 85 p. 235 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9783032107411

Full Description

This book is an extensive work that provides valuable insights into the use of chemometric techniques for the analysis and interpretation of complex data from oil spill disasters. The book's main goal is to give forensic chemists, environmental scientists, and business experts cutting-edge techniques for precisely identifying, categorizing, and tracking the causes of oil spills in order to improve response plans and lessen their negative effects on the environment.

Through the use of chemometric methods to evaluate weathering effects and distinguish between possible origins, the book offers an organized method for conducting forensic examinations of oil spills. In order to support legal processes and environmental assessments, this framework improves the objectivity and effectiveness of forensic analyses. The book contains case studies that show how chemometric approaches can be successfully applied in actual oil spill situations. These real-world examples give readers insight into how the approaches described might be applied in different situations and demonstrate how beneficial they are.

Contents

1 Recognition Using Numerical Methods Approach.- 2 Classification of Similar Chemical Properties in Oil Spills.- 3 Dimensionality Reduction of Oil Spill Variables.- 4 Contaminant of Polyaromatic Hydrocarbon in Oil Spills.- 5 Solving Pattern Recognition Challenges Using Artificial Neural Networks (ANNs).- 6 Bridging Machine Learning and Oil Spill Data.

最近チェックした商品