Elements of Deep Learning (2026. Approx. 600 p. 254 mm)

個数:
  • 予約
  • ポイントキャンペーン

Elements of Deep Learning (2026. Approx. 600 p. 254 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783032107374

Full Description

This textbook offers a comprehensive introduction to deep learning and neural networks, integrating core foundations with the latest advances. It begins with essential machine learning concepts and classic neural network architectures before progressing through convolutional models, backpropagation, regularization, generalization theory, PAC learning, and Boltzmann machines. Advanced chapters cover sequence models — including recurrent networks, LSTMs, attention, Transformers, state-space models, and large language models — alongside deep generative approaches such as VAEs, GANs, and diffusion models. Emerging topics include graph neural networks, self-supervised learning, metric learning, reinforcement learning, meta-learning, model compression, and knowledge distillation.

Balancing mathematical rigor with hands-on practice, Elements of Deep Learning emphasizes both theoretical depth and real-world application. Different theories are introduced with PyTorch-based code examples, helping readers to translate theory into implementation. Organized into five sections—fundamentals, sequence models, generative models, emerging topics, and practice—the text provides a unified roadmap for mastering modern deep learning.

Designed for advanced undergraduates, graduate students, instructors, and professionals in engineering, computer science, mathematics, and related fields, this book serves both as a primary course text and a reliable reference. With minimal prerequisites in linear algebra and calculus, it offers accessible explanations while equipping readers with practical tools for applications in vision, language, signal processing, healthcare, and beyond.

Contents

Chapter 1: Introduction.- Part 1: Fundamentals of Deep Learning.- Chapter 2: Feed-forward Neural Network.- Chapter 3: Regularization.- Chapter 4: Convolutional Networks.- Chapter 5: Restricted Boltzmann Machine (RBM) and deep belief network.- Part 2: Sequence Modeling.- Chapter 6: RNN and LSTM.- Chapter 7: Attention Mechanism, Transformers, BERT, and GPT.- Chapter 8: Large Language Models.- Part 3: Generative Models.- Chapter 9: Variational Models.- Chapter 10: Generative Moment Matching.- Chapter 11: Generative Adversarial Networks.- Chapter 12: Diffusion Models.- Part 4: Emerging Topics in Deep Learning.- Chapter 13: Graph Neural Networks.- Chapter 14: Deep Reinforcement Learning.- Chapter 15: Few-shot Learning and Meta-learning.- Chapter 16: Network Compression.- Chapter 17: Federated Learning.- Chapter 18: Explainable AI.- Chapter 19: Self-supervised Learning.- Part 5: Theory of Neural Networks.- Chapter 20: Theory of Neural Networks.- Part 6: Deep Learning in Practice.- Chapter 21: Deep Learning Tuning.

最近チェックした商品