Designing Possibilistic Information Fusion Systems : Redundancy as Criterion for Fusion Topologies (Technologien für die intelligente Automation 20) (2026. xvi, 226 S. XVI, 226 p. 40 illus., 37 illus. in color. 240 mm)

個数:
  • 予約

Designing Possibilistic Information Fusion Systems : Redundancy as Criterion for Fusion Topologies (Technologien für die intelligente Automation 20) (2026. xvi, 226 S. XVI, 226 p. 40 illus., 37 illus. in color. 240 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9783032106957

Full Description

Intelligent technical systems process information from multiple sources, but are confronted with uncertainties inherent in the information which is often imprecise, incomplete, or inconsistent. As the number of information sources increases, so does the uncertainty, as well as the risk that individual sources are unreliable. This leads to a lack of confidence in analyses and decisions. This thesis presents the Redundancy-hardened Robust Fusion System (R2FS), which aims to exploit redundancies in information sources to increase robustness against changes in source reliability. Leveraging the strengths of possibility theory, it identifies redundancies in information sources, even in environments where information is scarce and characterised by a high degree of epistemic uncertainty. Based on the novel dual redundancy metric proposed in this thesis, redundant sources are aligned in a distributed fusion topology. It is demonstrated that the R2FS outperforms established possibilistic fusion rules in terms of robustness due to the exploitation of redundancy in the distributed topology. This book concludes with a discussion of the current state of uncertainty modelling, highlighting how uncertainty modelling techniques currently used in information fusion could benefit machine learning applications.

Contents

Introduction.- Preliminaries.- Scientific State of the Art.- Open Research Topics.- Approach.- Evaluation.- Conclusion and Outlook.

最近チェックした商品