Monte Carlo and Quasi-Monte Carlo 2024 : MCQMC 2024, Waterloo, Canada, August 18-23 (Springer Proceedings in Mathematics & Statistics 522) (2026. x, 406 S. X, 406 p. 105 illus., 99 illus. in color. 235 mm)

個数:
  • 予約
  • ポイントキャンペーン

Monte Carlo and Quasi-Monte Carlo 2024 : MCQMC 2024, Waterloo, Canada, August 18-23 (Springer Proceedings in Mathematics & Statistics 522) (2026. x, 406 S. X, 406 p. 105 illus., 99 illus. in color. 235 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9783032105899

Full Description

This volume presents the refereed proceedings of the 16th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held in Waterloo, Ontario, Canada, and organized by the University of Waterloo in August 2024. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems arising, in particular, in finance, statistics, and computer graphics.

Contents

I Invited Talks, Fred J. Hickernell, Nathan Kirk, Aleksei G. Sorokin, Quasi-Monte Carlo Methods: What, Why, and How?.- Alexander Keller, Frances Y. Kuo, Dirk Nuyens, and Ian H. Sloan, Lattice-based Deep Neural Networks: Regularity and Tailored Regularization.- Qingyang Liu, Heishiro Kanagawa, Matthew Fisher, François-Xavier Briol, and Chris. J. Oates, Fast Approximate Solutions of Stein Equations for Post-Processing of MCMC.- Art Owen, Error Estimation for Quasi-Monte Carlo.- II Regular Talks, Ben Adcock, Function Recovery and Optimal Sampling in the Presence of Nonuniform Evaluation Costs.- Charly Andral, Combining Normalizing Flows and Quasi-Monte Carlo.- Vishnupriya Anupindi and Peter Kritzer, Reduced Digital Nets.- Philippe Blondeel, Filip Van Utterbeeck, and Ben Lauwens, Application of quasi-Monte Carlo in Mine Countermeasure Simulations with a Stochastic Optimal Control Framework.- Arne Bouillon, Toon Ingelaere, and Giovanni Samaey, Single-Ensemble Multilevel Monte Carlo for Discrete Ensemble Kalman Methods.- Ana Djurdjevac, Vesa Kaarnioja, Max Orteu, and Claudia Schillings, Quasi-Monte Carlo for Bayesian Shape Inversion Governed by the Poisson Problem Subject to Gevrey Regular Domain Deformations.- Ambrose Emmett-Iwaniw and Nathan Kirk, Enhancing Neural Autoregressive Distribution Estimators for Image Reconstruction.-  Vesa Kaarnioja, Ilja Klebanov, Claudia Schillings, and Yuya Suzuki, Lattice Rules Meet Kernel Cubature.- Andrzej Kałuża, Leszek Plaskota, Asymptotic Analysis of Adaptive Simpson Quadratures for Piecewise Smooth Functions.- Pierre L'Ecuyer and Christian Weiß, Lattice Tester: A Software Tool to Analyze Integral Lattices.- Moritz Moeller, Kateryna Pozharska, and Tino Ullrich, Sampling Designs for Function Recovery - Theoretical Guarantees, Comparison and Optimality.- Chinmay Patwardhan, Pia Stammer, Emil Løvbak, Jonas Kusch, Sebastian Krumscheid, Low-Rank Variance Reduction for Uncertain Radiative Transfer with Control Variates.- Pieterjan Robbe, Tiernan A. Casey, Michael W. D. Cooper, Christopher Matthews, Khachik Sargsyan, David A. Andersson, and Habib N. Najm, Bayesian Calibration of Fission Gas Diffusivity in Nuclear Fuels using Multilevel Delayed Acceptance MCMC.- Asaki Saito and Akihiro Yamaguchi, Accelerating True Orbit Pseudorandom Bit Generation Using Newton's Method.- Christoph Schied and Alexander Keller, Parametric Integration with Neural Integral Operators.- Silei Song, Arash Fahim, and Michael Mascagni, WoS-NN: an Effective Stochastic Solver for Elliptic PDEs with Machine Learning.

最近チェックした商品