Cohomology of Arithmetic Groups (Springer Monographs in Mathematics) (2025. xvi, 284 S. XVI, 284 p. 5 illus. 235 mm)

個数:
  • 予約
  • ポイントキャンペーン

Cohomology of Arithmetic Groups (Springer Monographs in Mathematics) (2025. xvi, 284 S. XVI, 284 p. 5 illus. 235 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9783032103772

Full Description

The objects of concern in this book are the sheaf-cohomology groups of locally symmetric spaces attached to arithmetically defined groups Γ, contained in an algebraic group. The sheaves are associated to Γ-modules over the ring of integers or finite extension rings thereof. There is an action of a Hecke algebra on these cohomology groups. Accordingly, they decompose into indecomposable pieces which are of great interest in number theory and algebraic geometry. Upon extending the coefficient systems to complex vector spaces, an individual indecomposable component corresponds to a space of automorphic forms, thereby, giving rise to an attached L-function. For example, the Ramanujan Delta function provides the first case of such a correspondence. Up to division by a carefully chosen period, these L-functions take rational (algebraic) values at certain critical arguments. In various examples, it is discussed how the numerator and denominator ideals of these normalised values shed some light on the integral structure of the cohomology groups as a module under the Hecke algebra. In particular, results concern the denominator of cohomology classes which are represented by Eisenstein series, analytically constructed beforehand. In very special cases, values of the Riemann zeta-function play a decisive role. Within the discussion of these number-theoretic aspects of the cohomology groups, questions of a computational nature unfold. These may lead, by means of experiments, to a better understanding of the general integral structure of these groups. This introduction to the cohomology of arithmetic groups and the associated theory of automorphic forms and special values of L-functions focuses on number theoretic aspects and questions. It is intended for graduate students and researchers in the field of arithmetic as well as in automorphic forms and differential geometry.

Contents

1 Basic Notions and Definitions.- 2 The Cohomology Groups.- 3 Hecke Operators.- 4 Representation Theory.- 5 Applications to Number Theory.- 6 Analytic Methods.

最近チェックした商品