Activity Cliffs : Where QSAR Predictions Fail (Springerbriefs in Molecular Science)

個数:
  • 予約

Activity Cliffs : Where QSAR Predictions Fail (Springerbriefs in Molecular Science)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 75 p.
  • 言語 ENG
  • 商品コード 9783032100801

Full Description

This brief introduces the readers of predictive cheminformatics to the concept of cliffs in the structure-activity landscape, which may greatly affect the data set modelability and the quality of predictions, hence generating disappointment from the performance of Quantitative Structure-Activity Relationship (QSAR) models. Although QSAR models are based on the assumption of a smooth activity landscape, where similar molecules are expected to have similar activities, some similar molecules can occasionally exhibit large differences in activity (for example, 100-fold). The definition of similarity for identifying activity cliffs may be based on chemical fingerprints or descriptors (classical activity cliffs), substructures (chirality cliffs, matched molecular pair cliffs), three-dimensional structure-based cliffs (3D cliffs), or the target-set-dependent potency difference. Some prediction outliers, even within the applicability domain of QSAR models, may arise due to the activity cliff (AC) behavior. In addition to compound pairs, activity cliffs may also be visualized in coordinated networks forming AC clusters. Despite using high-quality data, the data set's modelability may be significantly compromised in the presence of ACs, among other factors. The modelability of the dataset has been studied using different approaches like modelability index (MODI), weighted modelability index (WMODI), rivality index, etc. At the same time, the applicability domain of QSAR models is evaluated using a variety of methods, including leverage, principal components, standardization methods, and distance to the model in X-space, among others. Different methods for identifying activity cliffs have been proposed, such as the structure-activity landscape index (SALI), the structure-activity relationship (SAR) index, and the structure-activity similarity (SAS) maps. Recently, the Arithmetic Residuals in K-Groups Analysis (ARKA) has been shown to be successful in identifying activity cliffs. This approach has also been applied in small data set classification modeling. A multiclass ARKA approach has also been developed for its possible application in regression-based problems by integrating it with the quantitative read-across structure-activity relationship (q-RASAR) framework. This book showcases the evolution and the current status of the concept of activity cliffs as relevant to QSAR predictions and indicates the future directions in the research on activity cliffs. Researchers in the fields of medicinal chemistry, predictive toxicology, nanosciences, food science, agricultural sciences, and materials informatics should benefit from the concept of activity cliffs, impacting model-derived predictions.

Contents

QSAR - A tool of Predictive Cheminformatics.- Outliers and the Applicability Domain of QSAR models.- Cliffs in Biological Activity Landscape.- The Arithmetic Residuals in K-Group Analysis (ARKA) for the Detection of Activity Cliffs.- Activity Cliffs and Dataset Modelability - Future Roadmaps.

最近チェックした商品