Reliability in Cyber-Physical Systems: The Human Factor Perspective (Springer Series in Reliability Engineering)

個数:
  • 予約

Reliability in Cyber-Physical Systems: The Human Factor Perspective (Springer Series in Reliability Engineering)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9783032099167

Full Description

This book offers a comprehensive analysis of the significant intersection where human factors and cyber-physical system (CPS) reliability meet. Physical component integration has become essential in a number of industries, including smart infrastructure, health care, transportation, and manufacturing. However, human performance and decision-making inside these complex frameworks also play an important part in determining the reliability of CPS. Key subjects discussed include the role of human factors in CPS reliability, machine learning and deep learning applications in cybersecurity, resilience engineering, cognitive task management, efficient team collaboration and communication, error control, and cybersecurity awareness.

The book will be read by professionals and scholars working in engineering, human factors, reliability engineering, cybersecurity, and related topics. In order to obtain a greater knowledge of the crucial role that human factors play in providing the reliability and trustworthiness of CPS, it is also beneficial for students pursuing courses or research in CPS, human-computer interface (HCI), and systems engineering.

Contents

Recurrent integrated CNN gate (RICG): A dynamic deep learning model for security and efficiency enhancement in cyber-physical systems.- A cognitive workload-aware machine learning model for performance enhancement in cyber-physical systems.- Audio driven detection of hate speech in Telugu: Toward ethical and secure CPS.- Vision transformer-based audio analysis for depression detection: A human factor in reliable CPS.- A distributed approach based on Catboost, BlockChain and edge computing for IoT security.- An improved anomaly detection based on ensemble learning and deep Q-network for mobile edge computing monitoring.- Efficient anomaly detection for cyber-physical leveraging knowledge distillation and model quantization.- Interpretable anomaly detection for cyber-physical system risk mitigation using CNN and SHAP.- Intrusion detection approaches in healthcare systems: An overview.- Optimizing intrusion detection systems: A machine learning-based feature selection approach for enhanced cybersecurity.- Human factors in cyber-physical systems: Bridging the gap between humans and technology.- Ensemble-based cognitive IDS for IIoT in cyber-physical environments.- Towards reliable and secure IoMT: A deep learning perspective on cyber-physical threats.- Improved computational diffie-hellman-based mechanism for cyber-physical security.- Enhancing PE malware detection: A comparative study of feature-based and image-based representations.- A lightweight attention-enhanced deep learning framework for malware detection in IoT: A comparative study of structured and image-based data representations.- Machine learning for cyber-physical systems: A short survey.- Formal methods for cyber-physical systems.

最近チェックした商品