Computational Approach for Air Pollution

個数:
  • 予約

Computational Approach for Air Pollution

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 290 p.
  • 言語 ENG
  • 商品コード 9783032092144

Full Description

Air pollution is a global environmental challenge that affects the health and well-being of millions of people worldwide. As the need for effective pollution control and mitigation measures continues to grow, so does the importance of advanced computational techniques in understanding, monitoring, and managing air quality. This contributed volume presents interdisciplinary cases that span the fields of environmental science, computer modeling, and data analysis to provide an overview of state-of-the-art computational methods used in tackling air pollution. This book offers an in-depth exploration of the tools, techniques, and strategies that have revolutionized our ability to study and address air quality issues.

Contents

Chapter 1. Introduction to computational approaches in air pollution.- Chapter 2. Understanding the health and environmental impacts of air pollutants.- Chapter 3. Assessing the health and environmental consequences of air pollution.- Chapter 4. Assessment on health and environmental impacts due to air pollution.- Chapter 5. Air pollution and its impact on health and environment in India.- Chapter 6. Analyzing air pollution sources effect and mitigation strategies.- Chapter 7. Towards a data-driven air pollution control strategy.- Chapter 8. Air pollution modeling using computational approaches.- Chapter 9. Machine learning in air quality prediction and control.- Chapter 10. Transforming air quality forecasting with machine learning techniques.- Chapter 11. Machine learning for air pollution prediction: A case study of Bhilwara, Rajasthan.- Chapter 12. Emission inventories to AI-based prediction for air pollutants.- Chapter 13. Harnessing biodiversity for air pollution mitigation through nature-based strategies and bioresource utilization.- Chapter 14. Digital pathways to cleaner air: Reducing construction-related CO₂ through BIM, digital twins, and artificial intelligence.- Chapter 15. Investigating the relationship between urbanization and air pollution: New insights from developed countries.- Chapter 16. Air pollution and recent trends in control strategy.- Chapter 17. COVID-19 emission inventory and air quality simulation in Madrin, Spain.- Chapter 18. Intuitionistic Fuzzy MCDM Decision Making Technique for the Selection of Property.- Chapter 19. Probabilistic and computational health risk modelling for assessment of air pollution exposure.- Chapter 20. Advancing sustainable and inclusive evaluation frameworks for health and environmental impact assessment.- Chapter 21. Environmental and Public Health Concerns in a Sustainable Future.

最近チェックした商品