Learning and Intelligent Optimization : 19th International Conference, LION 19, Prague, Czech Republic, June 15-19, 2025, Proceedings, Part II (Lecture Notes in Computer Science)

個数:
  • 予約

Learning and Intelligent Optimization : 19th International Conference, LION 19, Prague, Czech Republic, June 15-19, 2025, Proceedings, Part II (Lecture Notes in Computer Science)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9783032091918

Full Description

The two-volume set LNCS 15744 + 15745 constitutes the proceedings of the 19th International Conference on Learning and Intelligent Optimization, LION 2025, which was held in Prague, Czech Republic, during June 15-19, 2025.

The 40 full papers included in the proceedings were carefully reviewed and selected from 70 submissions. They focus on exploring the intersections of Artificial Intelligence, Machine Learning, and Operations Research.

Contents

.- Autoregressive RL Approach for Mixed-Integer Linear Programs.

.- Algorithm Configuration in the Unified Planning Framework.

.- Learning to Repair Infeasible$^*$ Problems with Deep Reinforcement Learning on Graphs.

.- Optimal Matched Block Design For Multi-Arm Experiments.

.- CHORUS: Zero-shot Hierarchical Retrieval and Orchestration for Generating Linear Programming Code.

.- Taxi re-positioning considering driver compliance.

.- A Shared Memory Optimal Parallel Redistribution Algorithm for SMC Samplers with Variable Size Samples.

.- A Hybrid Quantum-Inspired and Deep Learning Approach for the Capacitated Vehicle Routing Problem with Time Windows.

.- Multi-Action Sampling with Deep Reinforcement Learning for Traveling Salesman Problem.

.- Adaptive Bias Generalized Rollout Policy Adaptation on the Flexible Job-Shop Scheduling Problem.

.- Codetector: A Framework for Zero-shot Detection of AI-Generated Code.

.- Pushing the Limits of the Reactive Affine Shaker Algorithm to Higher Dimensions.

.- Convex quadratic programming-based predictors: An algorithmic framework and a study of possibilities and computational challenges.

.- Studies on a Bayesian Optimization Based Approach to Tune Hyperparameters of Matheuristics.

.- Local iterative algorithms for approximate symmetry guided by network centralities.

.- Addressing Over-fitting in Passive Constraint Acquisition through Active Learning.

.- Learning to solve the Skill Vehicle Routing Problem with Deep Reinforcement Learning.

.- CGD: Modifying the Loss Landscape by Gradient Regularization.

.- Data Sampling-driven Adaptive Modification of Bus Routes Under Time-Varying Road Conditions.

最近チェックした商品