Computational Physics I : Numerical Methods (Graduate Texts in Physics) (4TH)

個数:
  • 予約

Computational Physics I : Numerical Methods (Graduate Texts in Physics) (4TH)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 464 p.
  • 言語 ENG
  • 商品コード 9783032078551

Full Description

This book presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Authored by a distinguished expert in the field, it combines rigorous theoretical insights with a wealth of practical and easily accessible computational applications. This book serves as an ideal standalone text for computational physics courses at both the graduate and advanced undergraduate levels. It offers a detailed and cohesive exploration of the physics of classical and quantum systems, electrostatics, thermodynamics, statistical physics and nonlinear systems, integrating foundational principles with advanced simulation techniques.

The significantly expanded and updated fourth edition comprises two volumes. Volume 1 is dedicated to numerical methods, covering essential topics such as error analysis, numerical differentiation and integration, Fourier transforms, time-frequency analysis, and data fitting. Alongside this, it presents essential computational methods such as Monte Carlo techniques and solving Newton's equations of motion, equipping readers with the tools necessary for practical problem-solving in computational physics. New in this book is an introduction to artificial neural networks (ANNs) for elementary tasks such as classification, regression, interpolation, time series analysis and principal component analysis. It features methods for solving differential equations with ANNs, including a discussion on the concept of "automatic differentiation" as a necessary alternative to analytical, numerical, and symbolic differentiation. These additions offer readers deeper insights and more robust tools for their studies and research.

Contents

1.Error Analysis.-2.Interpolation.- 3.Differentiation.- 4.Integration.- 5.Systems of Inhomogeneous Linear Equations.- 6.Roots and Extremal Points.- 7.Fourier Transformation.- 8.Time-Frequency Analysis.- 9.Random Numbers and Monte Carlo Methods.- 10.Eigenvalue Problems.- 11.Data Fitting.- 12.Data Analysis with Arti cial Neural Networks.- 13.Discretization of Di erential Equations.- 14.Equations of Motion.

最近チェックした商品