計量経済学モデリングにおける非線形性:実践的アプローチ<br>Non-Linearity in Econometric Modeling : A Practical Approach (Dynamic Modeling and Econometrics in Economics and Finance)

個数:

計量経済学モデリングにおける非線形性:実践的アプローチ
Non-Linearity in Econometric Modeling : A Practical Approach (Dynamic Modeling and Econometrics in Economics and Finance)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9783032064615

Full Description

Nonlinear models are indispensable in modern finance, yet their reliance on numerical root-finding methods introduces layers of complexity that demand careful attention. This textbook offers a comprehensive and accessible guide to understanding these challenges and applying advanced econometric techniques to real-world financial and economic time series data.
Designed for students, professionals, and researchers with a foundational background in statistics, econometrics, and finance, this book bridges the gap between theory and practice. It introduces key concepts progressively, making it suitable for both intermediate and advanced readers. Each chapter is written in clear, approachable language, ensuring that even those with limited prior experience in econometrics can grasp and apply the material effectively.
The book is organized into five chapters that progressively guide readers through key concepts in financial time series modeling. It begins with Chapter 1, which introduces data filtering techniques, emphasizing the Kalman Filter's role in improving model accuracy. Chapter 2 explores volatility modeling, addressing common challenges in measuring and interpreting variance in financial data. Chapter 3 builds on this by presenting hybrid approaches that combine GARCH models with neural networks to enhance predictive performance. Chapter 4 applies dynamic volatility models to option valuation, offering both theoretical insights and practical tools. Finally, Chapter 5 delves into regime-switching models, including MSAR (Markov Switching Auto Regressive) and STAR (Smooth Transition Auto Regressive), to capture nonlinear behaviors and structural shifts in time series data. Together, these chapters form a cohesive narrative on modeling the dynamic behavior of financial time series, with a particular emphasis on volatility and structural shifts. Whether you're a finance professional, economist, or data scientist, this book is an essential resource for mastering the tools and techniques that drive modern financial analysis.

Contents

Importance of Filters in Data Processing Pipeline discusses about the challenges of dealing with real-world data and application of Kalman Filter to improve the reliability and accuracy of models.- Volatility Modeling discusses the common problem with volatility or variance and covers how volatility can be computed and modeled.- Hybrid Volatility Modeling discusses while GARCH volatility models remain valuable, a combination of GARCH and Neural Networks can offer better output considering the availability of data, computational power, and algorithmic advancements.- Dynamic Volatility and Option Valuation provides a practical and theoretical framework for pricing and analyzing options, utilizing advanced volatility modeling techniques.- Markov Switching Models, Threshold Auto Regressive Models, and Smooth Transition Model discusses the application Markov Switching Auto Regressive Model (MSAR) and Smooth Transition Auto Regressive (STAR) Model.

最近チェックした商品