Varieties of Nodal Surfaces, Coding Theory and Discriminants of Cubic Hypersurfaces (Lecture Notes of the Unione Matematica Italiana)

個数:
  • 予約

Varieties of Nodal Surfaces, Coding Theory and Discriminants of Cubic Hypersurfaces (Lecture Notes of the Unione Matematica Italiana)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 195 p.
  • 言語 ENG
  • 商品コード 9783032058980

Full Description

This research book deals with some classical problems of algebraic geometry, notably the problem about the maximal number of singularities that a nodal variety can have, and the problem about the description of the components of the Severi varieties of nodal surfaces. A complete solution is found for nodal quartic surfaces in 3-space and for nodal K3 surfaces. New striking results are found also for quintic and sextic surfaces. The main focus of the book is the relation of nodal surfaces with binary coding theory, introduced by Beauville: two codes are attached to a nodal projective surface, which are invariants of these components, and in some cases determine them.

The book contains a very concrete introduction to binary coding theory and new applications of Nikulin's theory of primitive embeddings of lattices. The book contains also a thorough investigation of cubic hypersurfaces and their singularities, and the associated discriminant surfaces, providing new constructions for surfaces of degree 5 and 6 with the maximal number of nodes. A surprising relation is found between the Barth 65 nodal surface and the Doro-Hall graph. The book is addressed to algebraic geometers and experts of coding theory. It is also meant to be a source of many beautiful classical constructions, due to Kummer, Togliatti and others, which should be of interest to graduate students who want to get to know classical projective geometry.

Contents

Chapter 1. Binary codes and the components of the varieties of nodal K3 surfaces.- Chapter 2. Cubic hypersurfaces, associated discriminants and low degree nodal surfaces.- Chapter 3. Nodal Quintic surfaces.- Chapter 4. Nodal Sextic surfaces.- Chapter 5. Codes of nodal sextics with many nodes.

最近チェックした商品