First-Order Schemata and Inductive Proof Analysis (Computer Science Foundations and Applied Logic)

個数:
  • 予約

First-Order Schemata and Inductive Proof Analysis (Computer Science Foundations and Applied Logic)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 278 p.
  • 言語 ENG
  • 商品コード 9783032057402

Full Description

Schemata are formal tools for describing inductive reasoning. They opened a new area in the analysis of inductive proofs.

The book introduces schemata for first-order terms, first-order formulas and first-order inference systems. Based on general first-order schemata, the cut-elimination-by-resolution (CERES) method—developed around the year 2000—is extended to schematic proofs. This extension requires the development of schematic methods for resolution and unification which are defined in this book. The added value of proof schemata compared to other inductive approaches consists in the extension of Herbrand's theorem to inductive proofs (in the form of Herbrand systems, which can be constructed effectively). An application to an analysis of mathematical proof is given.  The work also contains and extends the newest results on schematic unification and corresponding algorithms.

Core topics covered:

first-order schemata
cut-elimination by resolution
point transition systems
schematic resolution
Herbrand systems
inductive proof analysis

This volume is the first comprehensive work on first-order schemata and their applications. As such, it will be eminently suitable for researchers and PhD students in logic and computer science either working or with an interest in proof theory, inductive reasoning and automated deduction.  Prerequisites are a firm knowledge of first-order logic, basic knowledge of automated deduction and a background in theoretical computer science.

Alexander Leitsch and Anela Lolic are affiliated with the Institute of Logic and Computation of the Technische Universität Wien, David M. Cerna with the Czech Academy of Sciences, Institute of Computer Science (Ústav informatiky AV ČR, v.v.i.).

Contents

1. Introduction.- 2. Schemata and Point Transition Systems.- 3. Term schemata and formula schemata.- 4. Term Schemata and Unification.- 5. Proof schemata.- 6. Proof schemata and arithmetic.- 7. Cut-Elimination and the Method CERES.- 8. Schematic CERES (completely new - improves former publications).- 9. An Application of Schematic CERES.- 10. Schematic Reasoning in GAPT.- 11. Conclusion.

最近チェックした商品