Machine Learning Technologies on Energy Economics and Finance : Energy and Sustainable Analytics, Volume 1 (International Series in Operations Research & Management Science 367) (2025. x, 290 S. X, 290 p. 145 illus., 141 illus. in color. 235 mm)

個数:

Machine Learning Technologies on Energy Economics and Finance : Energy and Sustainable Analytics, Volume 1 (International Series in Operations Research & Management Science 367) (2025. x, 290 S. X, 290 p. 145 illus., 141 illus. in color. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 300 p.
  • 言語 ENG
  • 商品コード 9783031948619

Full Description

This book explores the latest innovations in energy economics and finance, with a particular focus on the role of machine learning algorithms in advancing the energy sector.

It examines key factors shaping this field, including market structures, regulatory frameworks, environmental impacts, and the dynamics of the global energy market. It discusses the critical application of machine learning (ML) in energy financing, introducing predictive tools for forecasting energy prices across various sectors—such as crude oil, electricity, fuelwood, solar, and natural gas. It also addresses how ML can predict investor behavior and assess the efficiency of energy markets, with a focus on both the opportunities and challenges in renewable energy and energy finance.

This book serves as a comprehensive guide for academics, practitioners, financial managers, stakeholders, government officials, and policymakers who seek strategies to enhance energy systems, reduce costs and uncertainties, and optimize revenue for economic growth. This is the first volume of a two-volume set.

Contents

Analyzing Global Energy Patterns: Clustering Countries and Predicting Trends Towards Achieving Sustainable Development Goals.- Access to Energy Finance: Development of Renewable Energy in Bangladesh.- Explainable AI in Energy Forecasting: Understanding Natural Gas Consumption through Interpretable Machine Learning Models.- An Extensive Statistical Analysis of Time Series Modelling and Forecasting of Crude Oil Prices.- Comparative analysis of selected emerging economies energy transition scenario: A transition pathway for the continental neighbours.- Forecasting Energy Prices using Machine Learning Algorithms: A Comparative Analysis.- An Evidence-based Explainable AI Approach for Analyzing the Influence of CO2 Emissions on Sustainable Economic Growth.- BLDAR: A Blending Ensemble Learning Approach for Primary Energy Consumption Analysis.- Analyzing Biogas Production in Livestock Farms Using Explainable Machine Learning.- Application of Machine Learning Techniques in the Analysis of Sustainable Energy Finance.- Machine Learning and Deep Learning Strategies for Sustainable Renewable Energy: A Comprehensive Review.- Efficient Gasoline Spot Price Prediction using Hyperparameter Optimization and Ensemble Machine Learning Approach.- The Implications of Energy Transition and Development of Renewable Energy on Sustainable Development Goals of Two Asian Tigers.

最近チェックした商品