Collaborative Computing: Networking, Applications and Worksharing (Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Enginee) (2025. xii, 488 S. XII, 488 p. 173 illus. 235 mm)

個数:

Collaborative Computing: Networking, Applications and Worksharing (Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Enginee) (2025. xii, 488 S. XII, 488 p. 173 illus. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783031932502

Full Description

The three-volume set LNICST 624, 625, 626 constitutes the refereed proceedings of the 20th EAI International Conference on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom 2024, held in Wuzhen, China, during November 14-17, 2024. 

The 62 full papers were carefully reviewed and selected from 173 submissions. They are categorized under the topical sections as follows:  

Edge computing & Task scheduling

Deep Learning and application

Blockchain applications

Security and Privacy Protection

Representation learning & Collaborative working

Graph neural networks & Recommendation systems

Federated Learning and application

Contents

Edge Computing & Task Scheduling.- Latency Energy aware Heterogeneous Resource Allocation and Task Scheduling in Industrial Cloud Edge Computing.- Backpressure-based Federated Learning Model Scheduling in Edge Computing.- Minimizing the Age of Knowledge in Application-oriented Mobile Edge Computing System with DRL-based Scheduling.- Dependency-Aware Task Offloading in Dynamic Network Environment with D2D Collaboration.- Delay Minimization for Downlink PD-NOMA Transmission with Index Coding in Cache-Aided Wireless Networks.- Fast Adaptive Caching Algorithm for Mobile Edge Networks Based on Meta-Reinforcement Learning.- Delay- and Cost-Aware Dynamic Service Migration in Collaborative Satellite Computing.- Towards Efficient Scheduling in Large Clusters Leveraging the Small-World Network Model.- A Dynamic Prioritization Task Offloading Strategy with Delay Constraints.- Task Scheduling Strategy among Multiple Local Mobile Clouds in Pervasive Edge Computing.- A Task Scheduling Strategy Based on Computing-Aware and Multi-Agent Collaborative Services in Pervasive Edge Computing.- Collaborative Vehicular Edge Cloud Computing Task Offloading Optimization Scheme Based on Deep Reinforcement Learning.- Deep Learning and Application.- NL-ATD: Spatio-Temporal Few-Shot Learning via Attention Transfer and Denoising Model.- A GCN-based DRL Approach for task migration and resource allocation in Heterogeneous Edge-Cloud Environments.- A Multi-Document Summarization Method for Customer Feedback Based on Large Language Models.- KaRe: Towards Flexible and Effective Machine Unlearning with Knowledge Alignment and Repair.- SWGCNN-BiLSTM: A Method for Detecting Unknown Attack Traffic within Imbalanced Samples.- Two-stage workflow scheduling based on deep reinforcement learning.- GRASP-SLAM: Gmapping-augmented DRL for Active SLAM using Policy gradient.- WiLDID:Low-Collaboration WiFi-Based Person Identification Via A Lightweight Deep Neural Network.- Dialogue Summarization by Integrating Structural Features and Improving Factual Consistency through Post-Editing.- TransAware: An Automatic Parallel Method for Deep Learning Model Training with Global Model Structure Awareness.- A Reliability Enhancement Scheme for Distributed Cloud Service Systems Based on Deep Reinforcement Learning.- Contrastive Learning-Based Finger-Vein Recognition Using Frequency-Mixup Augmentation and Time-Frequency Feature Fusion.- BACE-RUL: A Bi-directional Adversarial Network with Covariate Encoding for Machine Remaining Useful Life Prediction.

最近チェックした商品