Pythonによる説明可能なAI(第2版)<br>Explainable AI with Python (2. Aufl. 2025. xxi, 324 S. XXI, 324 p. 144 illus., 124 illus. in color)

個数:

Pythonによる説明可能なAI(第2版)
Explainable AI with Python (2. Aufl. 2025. xxi, 324 S. XXI, 324 p. 144 illus., 124 illus. in color)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 298 p.
  • 言語 ENG
  • 商品コード 9783031922282

Full Description

This comprehensive book on Explainable Artificial Intelligence has been updated and expanded to reflect the latest advancements in the field of XAI, enriching the existing literature with new research, case studies, and practical techniques. 

The Second Edition expands on its predecessor by addressing advancements in AI, including large language models and multimodal systems that integrate text, visual, auditory, and sensor data. It emphasizes making complex systems interpretable without sacrificing performance and provides an enhanced focus on additive models for improved interpretability. Balancing technical rigor with accessibility, the book combines theory and practical application to equip readers with the skills needed to apply explainable AI (XAI) methods effectively in real-world contexts.

Features:

Expansion of the "Intrinsic Explainable Models" chapter to delve deeper into generalized additive models and other intrinsic techniques, enriching the chapter with new examples and use cases for a better understanding of intrinsic XAI models.

Further details in "Model-Agnostic Methods for XAI" focused on how explanations differ between the training set and the test set, including a new model to illustrate these differences more clearly and effectively.

New section in "Making Science with Machine Learning and XAI" presenting a visual approach to learning the basic functions in XAI, making the concept more accessible to readers through an interactive and engaging interface.

Revision in "Adversarial Machine Learning and Explainability" that includes a code review to enhance understanding and effectiveness of the concepts discussed, ensuring that code examples are up-to-date and optimized for current best practices.

New chapter on "Generative Models and Large Language Models (LLM)" chapter dedicated to generative models and large language models, exploring their role in XAI and how they can be used to create richer, more interactive explanations. This chapter also covers the explainability of transformer models and privacy through generative models.

New "Artificial General Intelligence and XAI" mini-chapter dedicated to exploring the implications of Artificial General Intelligence (AGI) for XAI, discussing how advancements towards AGI systems influence strategies and methodologies for XAI.

Enhancements in "Explaining Deep Learning Models" features new methodologies in explaining deep learning models, further enriching the chapter with cutting-edge techniques and insights for deeper understanding.

Contents

Chapter 1 The Landscape.- Chapter 2 "Explainable AI: needs, opportunities and challenges".- Chapter 3 Intrinsic Explainable Models.- Chapter 4 Model-agnostic methods for XAI.- Chapter 5 Explaining Deep Learning Models.- Chapter 6 Additive Models for Interpretability.- Chapter 7 Adversarial Machine Learning and Explainability.-Chapter 8 Explainability of Language Models (XAI and LLM).- Chapter 9 Making science with Machine Learning and XAI.- Chapter 10 AGI, LLM, XAI.- Chapter 11 "A proposal for a sustainable model of Explainable AI.

最近チェックした商品