Mean Field Guided Machine Learning (Wireless Networks) (2025. x, 150 S. X, 150 p. 37 illus., 31 illus. in color. 235 mm)

個数:

Mean Field Guided Machine Learning (Wireless Networks) (2025. x, 150 S. X, 150 p. 37 illus., 31 illus. in color. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031918582

Full Description

This book explores the integration of Mean Field Game (MFG) theory with machine learning (ML), presenting both theoretical foundations and practical applications.  Drawing from extensive research, it provides insights into how MFG can improve various ML techniques, including supervised learning, reinforcement learning, and federated learning.

MFG theory and ML are converging to address critical challenges in high-dimensional spaces and multi-agent systems. While ML has transformed industries by leveraging vast data and computational power, scalability and robustness remain key concerns. MFG theory, which models large populations of interacting agents, offers a mathematical framework to simplify and optimize complex systems, enhancing ML's efficiency and applicability.

By bridging these two fields, this book aims to drive innovation in scalable and robust machine learning. The integration of MFG with ML not only expands research possibilities but also paves the way for more adaptive and intelligent systems. Through this work, the authors hope to inspire further exploration and development in this promising interdisciplinary domain. With case studies and real-world examples, this book serves as a guide for researchers and students in communications and networks seeking to harness MFG's potential in advancing ML.  Industry managers, practitioners and government research workers in the fields of communications and networks will find this book a valuable resource as well.

Contents

Preface.- Chapter 1 Overview of Mean Field Theory and Machine Learning.- Chapter 2 Mean Field Game and Machine Learning Basis.- Chapter 3 Opinion Evolution in Social Networks: Use Generative Adversarial Networks to Solve Mean Field Game.- Chapter 4 Data Augmentation using Mean Field Games.- Chapter 5 Mean Field Game Guided Deep Reinforcement Learning.- Chapter 6 Incentive Mechanism Design in Satellite-Based Federated Learning using Mean Field Evolutionary Approach.- Chapter 7 Client Selection in Hierarchical Federated Learning with Mean
Field Game.- Chapter 8 Evolutionary Neural Architecture Search with Mean Field Game
Selection Mechanism.- References.- Index.

最近チェックした商品