Demystifying AI and ML for Cyber-Threat Intelligence (Information Systems Engineering and Management 43) (2025. xii, 585 S. XII, 585 p. 177 illus., 157 illus. in color. 235 mm)

個数:

Demystifying AI and ML for Cyber-Threat Intelligence (Information Systems Engineering and Management 43) (2025. xii, 585 S. XII, 585 p. 177 illus., 157 illus. in color. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031907227

Full Description

This book simplifies complex AI and ML concepts, making them accessible to security analysts, IT professionals, researchers, and decision-makers. Cyber threats have become increasingly sophisticated in the ever-evolving digital landscape, making traditional security measures insufficient to combat modern attacks. Artificial intelligence (AI) and machine learning (ML) have emerged as transformative tools in cybersecurity, enabling organizations to detect, prevent, and respond to threats with greater efficiency. This book is a comprehensive guide, bridging the gap between cybersecurity and AI/ML by offering clear, practical insights into their role in threat intelligence. Readers will gain a solid foundation in key AI and ML principles, including supervised and unsupervised learning, deep learning, and natural language processing (NLP) while exploring real-world applications such as intrusion detection, malware analysis, and fraud prevention. Through hands-on insights, case studies, and implementation strategies, it provides actionable knowledge for integrating AI-driven threat intelligence into security operations. Additionally, it examines emerging trends, ethical considerations, and the evolving role of AI in cybersecurity. Unlike overly technical manuals, this book balances theoretical concepts with practical applications, breaking down complex algorithms into actionable insights. Whether a seasoned professional or a beginner, readers will find this book an essential roadmap to navigating the future of cybersecurity in an AI-driven world. This book empowers its audience to stay ahead of cyber adversaries and embrace the next generation of intelligent threat detection.

Contents

A Comprehensive Review on the Detection Capabilities of IDS using Deep Learning Techniques.- Next-Generation Intrusion Detection Framework with Active Learning-Driven Neural Networks for DDoS Defense.- Ensemble Learning-based Intrusion Detection System for RPL-based IoT Networks.- Advancing Detection of Man-in-the-Middle Attacks through Possibilistic C-Means Clustering.- CNN-Based IDS for Internet of Vehicles Using Transfer Learning.- Real-Time Network Intrusion Detection System using Machine Learning.- OpIDS-DL : OPTIMIZING INTRUSION DETECTION IN IoT NETWORKS: A DEEP LEARNING APPROACH WITH REGULARIZATION AND DROPOUT FOR ENHANCED CYBERSECURITY.- ML-Powered Sensitive Data Loss Prevention Firewall for Generative AI Applications.- Enhancing Data Integrity: Unveiling the Potential of Reversible Logic for Error Detection and Correction.- Enhancing Cyber security through Reversible Logic.- Beyond Passwords: Enhancing Security with Continuous Behavioral Biometrics and Passive Authentication.

最近チェックした商品