Artificial Intelligence for Molecular Biology : Fundamental Methods and Applications (2025. 410 S. Approx. 410 p. 235 mm)

個数:

Artificial Intelligence for Molecular Biology : Fundamental Methods and Applications (2025. 410 S. Approx. 410 p. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031904493

Full Description

Molecular biology is at the forefront of scientific discovery, unraveling the intricacies of life at the most fundamental level. As biological systems become increasingly complex and data-rich, artificial intelligence (AI) has emerged as a pivotal tool for unlocking new insights and enhancing our understanding of these systems. This first volume focuses on the core principles of molecular biology while introducing AI-driven approaches to genomic and proteomic sequence analysis. It serves as a foundation for integrating computational methodologies into the study of biological systems.

The chapters in this volume are structured to provide a comprehensive overview of the essential concepts, tools, and methodologies in molecular biology, enriched by the latest advancements in AI:

Fundamentals of Molecular Biology: This chapter delves into the foundational elements of molecular biology, exploring the central dogma, gene expression regulation, cellular organization, and the evolution of genome studies. It also highlights the role of computational biology in complementing traditional experimental techniques.
DNA, RNA, & Protein Structures: Understanding the structural intricacies of DNA, RNA, and proteins is crucial for comprehending their functions. This chapter outlines their fundamental properties and sets the stage for discussing AI-driven sequence analysis.
Exploration of AI-Driven Genomic and Proteomic Sequence Analysis Landscape: This section provides an in-depth look at how AI is reshaping the field of sequence analysis. Topics include representation learning, feature engineering, predictive modeling, and an evaluation of performance metrics for AI-driven pipelines.
Insights of Biological Databases: Biological data is the backbone of molecular biology research. This chapter discusses the structure, organization, and utilization of key databases, emphasizing data formats, redundancy issues, and retrieval systems.
DNA & RNA Sequence Representation Learning Methods: Representing nucleotide sequences in ways that AI models can process effectively is a critical challenge. This chapter explores various encoding methods, from nucleotide distributions to Fourier transformations, providing a robust toolkit for researchers.
Protein Sequence Representation Learning Methods: Similar to nucleic acid sequences, encoding protein sequences requires sophisticated techniques. This section details diverse methodologies, including physicochemical properties, z-scales, and context-aware encodings.
CRISPR System and AI Applications: CRISPR technology has revolutionized genetic editing, and AI is accelerating its potential. This chapter examines AI-driven approaches to CRISPR-related tasks, from predictive modeling to dataset development, emphasizing the synergy between these transformative technologies.

Through this volume, readers will gain a solid understanding of molecular biology and its convergence with AI. The interdisciplinary approach ensures that the biological complexities are complemented by computational rigor, laying the groundwork for the second volume, which delves deeper into advanced AI applications in molecular biology.

Contents

Fundamentals of Molecular Biology.- DNA, RNA & Protein Structures.- Exploration of AI-Driven Genomic and Proteomic Sequence Analysis Landscape.- Insights of Biological Databases.- DNA & RNA Sequence Representation Learning Methods.- Protein sequence Representation Learning Methods.- CRISPR System and AI applications.

最近チェックした商品