Artificial Intelligence Proxy Models: Applications in Geosciences (Springerbriefs in Applied Sciences and Technology)

個数:
電子版価格
¥8,759
  • 電子版あり

Artificial Intelligence Proxy Models: Applications in Geosciences (Springerbriefs in Applied Sciences and Technology)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 51 p.
  • 商品コード 9783031904462

Full Description

This Springer Brief focuses on the use of artificial intelligence (AI) in geosciences and reservoir engineering. This concise yet comprehensive work explores how AI-driven proxy models can effectively tackle the computational challenges associated with reservoir simulations, history matching, production optimization, and uncertainty analysis.

In reservoir engineering, a key challenge is reproducing observed production and pressure data using forward simulation models, known as reservoir simulators. However, the inverse problem of history matching requires running hundreds of simulations, each demanding significant computational resources. Full-scale reservoir simulators are often too time-consuming, making proxy models—such as second-order polynomials, kriging, and artificial neural networks (ANN)—essential alternatives.

This Springer Brief emphasizes the power of AI, particularly ANN, as the most pragmatic approach for addressing real-world reservoir engineering problems. ANN has already gained widespread acceptance in computationally intensive fields such as aerospace, defense, and security due to its ability to model nonlinearities. Given the highly nonlinear nature of reservoir simulations, this book demonstrates how artificial neural networks-based proxies provide efficient and accurate solutions.

To illustrate these concepts, the methodology is applied to a synthetic field inspired by real-world data: the Brugge field dataset. This widely used open-source dataset enables practitioners to familiarize themselves with AI-driven workflows in reservoir simulation. The Brief covers key applications, including history matching, production optimization (e.g., well placement and production rates), and uncertainty analysis, with detailed explanations of the workflows for each case.

This Brief offers high-quality scientific content aligned with international research standards. It is now available in both print and digital formats.

Contents

Methodology to Build an Artificial Neural Network for Reservoir Engineering Problems.- Artificial Neural Networks for Reservoir Engineering Problems.- Application to these Advanced Workflows to the Brugge Field Case.- Description of the Brugge Fiel.

最近チェックした商品