Guide to Numerical Algorithm Design and Development : Including Legacy Examples from Fortran and MathCAD in High Precision (Texts in Computer Science) (2025. xxv, 287 S. XXV, 287 p. 7 illus. in color. 235 mm)

個数:

Guide to Numerical Algorithm Design and Development : Including Legacy Examples from Fortran and MathCAD in High Precision (Texts in Computer Science) (2025. xxv, 287 S. XXV, 287 p. 7 illus. in color. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031901775

Full Description

The focus of this unique textbook/reference is on numerical algorithms that are stable and provide high precision in common numerical problems encountered in large-scale modeling projects. 

The techniques presented are based on algorithms developed by the author over six decades of research and publications in peer-reviewed journals. The exposition includes topics typical of numerical analysis courses and is supplemented with examples of algorithms demonstrated in an engineering worksheet that is easy to read and comprehend. Each chapter ends with exercises and programming problems. Additional examples are available as downloadable Fortran code based on the author's large-scale models in computational physics. The limitations of commodity processors and modern compilers is discussed, with advice provided on how to control them in an algorithm's code design. An ample bibliography of over 200 citations provides a guide to further reading.

Topics, features, and emphases:

·         Stability: knowing the range of algorithm parameters for producing reliable results

·         Accuracy: understanding convergence to a result through quantitative metrics

·         Precision: advance knowledge of the expected numerical precision and how to control it 

·         Efficiency: translating an algorithm into code with limited redundant computation

The primary target audience of this textbook/guide are senior graduate (or postgraduate) students in computer science and scientific or engineering fields who are starting on a career path as the next generation of model developers for high-performance computing (HPC). Additionally, the book will appeal to professionals engaged in large-scale computer model development who could use the volume as a course supplement or reference.    

The author is an Honorary Fellow of the University of Wollongong, New South Wales, Australia.  He is active as a private consultant in HPC and CEO of HiPERiSM Consulting, LLC, in the United States of America.

Contents

1.Number Systems and Machine Representation.- 2.Function Approximation and Error.- 3.Interpolation of Discrete Data.- 4.Function Approximation.- 5.Operator Equations and Notation.- 6.Finding Roots of Functions.- 7.One-dimensional Numerical Integration.- 8.Two-dimensional Numerical Integration.- 9.Numerical Solution of Ordinary Differential Equations.- 10.Direct Search Optimization Methods.

最近チェックした商品