An Introduction to the Modern Martingale Theory and Applications : An Analytic View (Texts in Applied Mathematics 81) (2025. xiv, 252 S. XIV, 252 p. 7 illus. 235 mm)

個数:

An Introduction to the Modern Martingale Theory and Applications : An Analytic View (Texts in Applied Mathematics 81) (2025. xiv, 252 S. XIV, 252 p. 7 illus. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031889028

Full Description

Martingale theory is a cornerstone of modern probability, offering a natural extension of the study of sums of independent random variables. Although its roots can be traced back to the work of Paul Lévy in 1937, it was Joseph L. Doob in the 1940s who formally developed the theory, culminating in his landmark book Stochastic Processes in 1953. Since then, martingale theory has evolved significantly, with deep contributions from mathematicians such as Donald L. Burkholder, Richard Gundy, and Burgess Davis, among others. This is what is now known as advanced martingale theory, which began with the publication of Burkholder's seminal paper Martingale Transforms in 1966.

This book provides a comprehensive treatment of both classical and advanced martingale theory. It opens with a historical introduction, exploring foundational functions such as Rademacher, Haar, and Walsh functions, before delving into the core concepts of conditional probability. The classical theory, as developed by Doob, is meticulously presented, followed by an in-depth examination of modern advancements, including Burkholder's inequalities, Burkholder-Davis-Gundy inequality, and their generalizations, as well as good-lambda inequalities. The final chapter showcases a wide range of applications, highlighting the theory's profound impact on Banach space theory, harmonic analysis, and beyond.

Intended for graduate students and researchers in probability and analysis, this book serves as both an introduction and a reference, offering a clear and structured approach to a subject that continues to shape mathematical research and its applications.

Contents

Chapter 1: Introduction.- Chapter 2: Probability and Conditional Expectation.- Chapter 3: Advanced Topics in Martingale Theory.- Chapter 4: Burkholder's inequalities and Davis'sinequality.- Chapter 5: Applications of Martingales.

最近チェックした商品