計量ファイナンスにおけるベイズ機械学習<br>Bayesian Machine Learning in Quantitative Finance : Theory and Practical Applications (2025. xxxix, 329 S. XXXIX, 329 p. 94 illus., 87 illus. in color. 210 m)

個数:

計量ファイナンスにおけるベイズ機械学習
Bayesian Machine Learning in Quantitative Finance : Theory and Practical Applications (2025. xxxix, 329 S. XXXIX, 329 p. 94 illus., 87 illus. in color. 210 m)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031884306

Full Description

This book offers a comprehensive discussion of the Bayesian inference framework and demonstrates why this probabilistic approach is ideal for tackling the various modelling problems within quantitative finance. It demonstrates how advanced Bayesian machine learning techniques can be applied within financial engineering, investment portfolio management, insurance, municipal finance management as well as banking.

The book covers a broad range of modelling approaches, including Bayesian neural networks, Gaussian processes and Markov Chain Monte Carlo methods. It also discusses the utility of Bayesian inference in quantitative finance and discusses future research goals in the applications of Bayesian machine learning in quantitative finance. Chapters are rooted in the theory of quantitative finance and machine learning while also outlining a range of practical considerations for implementing Bayesian techniques into real-world quantitative finance problems. This book is ideal for graduate researchers and practitioners at the intersection of machine learning and quantitative finance, as well as those working in computational statistics and computer science more broadly.

Contents

1 Introduction To Bayesian Machine Learning In Quantitative Finance.- 2 Background To Bayesian Machine Learning In Quantitative Finance.- 3 On the Stochastic Alpha Beta Rho Model and Hamiltonian Monte Carlo Techniques.- 4 Learning Equity Volatility Surfaces using Sparse Gaussian Processes.- 5 Analyzing South African Equity Option Prices Using Normalizing Flows.- 6 Sparse and Distributed Gaussian Processes For Modeling Corporate Credit Ratings.- 7 Bayesian Detection Of Recovery On Charged-Off Loan Accounts.- 8 Bayesian Audit Outcome Model Selection Using Normalising Flows.- 9 Bayesian Detection Of Unauthorized Expenditure Using Langevin and Hamiltonian Monte Carlo.- 10 Bayesian Neural Network Inference Of Motor Insurance Claims.- 11 Shadow and Adaptive Hamiltonian Monte Carlo Methods For Calibrating The Nelson and Siegel Model.- 12 Static and Dynamic Nested Sampling For Yield Curve Model Selection.- 13 A Bayesian Investment Analyst On The Johannesburg Stock Exchange.- 14 Conclusions to Bayesian Machine Learning In Quantitative Finance.

最近チェックした商品