Morse Homology with Differential Graded Coefficients (Progress in Mathematics 360) (2025. xi, 229 S. XI, 229 p. 2 illus. in color. 235 mm)

個数:

Morse Homology with Differential Graded Coefficients (Progress in Mathematics 360) (2025. xi, 229 S. XI, 229 p. 2 illus. in color. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783031880193

Full Description

The key geometric objects underlying Morse homology are the moduli spaces of connecting gradient trajectories between critical points of a Morse function. The basic question in this context is the following: How much of the topology of the underlying manifold is visible using moduli spaces of connecting trajectories? The answer provided by "classical" Morse homology as developed over the last 35 years is that the moduli spaces of isolated connecting gradient trajectories recover the chain homotopy type of the singular chain complex. 

The purpose of this monograph is to extend this further: the fundamental classes of the compactified moduli spaces of connecting gradient trajectories allow the construction of a twisting cocycle akin to Brown's universal twisting cocycle. As a consequence, the authors define (and compute) Morse homology with coefficients in any differential graded (DG) local system. As particular cases of their construction, they retrieve the singular homology of the total space of Hurewicz fibrations and the usual (Morse) homology with local coefficients. A full theory of Morse homology with DG coefficients is developed, featuring continuation maps, invariance, functoriality, and duality. Beyond applications to topology, this is intended to serve as a blueprint for analogous constructions in Floer theory. 

The new material and methods presented in the text will be of interest to a broad range of researchers in topology and symplectic topology. At the same time, the authors are particularly careful to give gentle introductions to the main topics and have structured the text so that it can be easily read at various degrees of detail. As such, the book should already be accessible and of interest to graduate students with a general interest in algebra and topology. 

Contents

Introduction and Main Results.- Morse vs DG Morse Homology Toolset.- Comparison of the Barraud-Cornea Cocycle and the Brown Cocycle.- Algebraic Properties of Twisted Complexes.- Morse Homology with DG-Coefficients: Construction.- Morse Homology with DG-Coefficients: Invariance.- Fibrations.- Functoriality: General Properties.- Functoriality: First Definition.- Functoriality: Second Definition. Cohomology and Poincaré Duality.- Shriek Maps and Poincaré Duality for Non-Orientable Manifolds.- Beyond the Case of Manifolds of Finite Dimension.- Appendix: Comparison of Geometry and Analytic Orientations in Morse Theory.

最近チェックした商品