Machine Learning, Deep Learning and AI for Cybersecurity (2025. ix, 647 S. IX, 647 p. 224 illus., 206 illus. in color. 235 mm)

個数:

Machine Learning, Deep Learning and AI for Cybersecurity (2025. ix, 647 S. IX, 647 p. 224 illus., 206 illus. in color. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 618 p.
  • 言語 ENG
  • 商品コード 9783031831560

Full Description

This book addresses a variety of problems that arise at the interface between AI techniques and challenging problems in cybersecurity. The book covers many of the issues that arise when applying AI and deep learning algorithms to inherently difficult problems in the security domain, such as malware detection and analysis, intrusion detection, spam detection, and various other subfields of cybersecurity. The book places particular attention on data driven approaches, where minimal expert domain knowledge is required.

This book bridges some of the gaps that exist between deep learning/AI research and practical problems in cybersecurity. The proposed topics cover a wide range of deep learning and AI techniques, including novel frameworks and development tools enabling the audience to innovate with these cutting-edge research advancements in various security-related use cases. The book is timely since it is not common to find clearly elucidated research that applies the latest developments in AI to problems in cybersecurity.

Contents

Online Clustering of Known and Emerging Malware Families.- Applying Word Embeddings and Graph Neural Networks for Effective Malware Classification.- A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs.- Comparing Balancing Techniques for Malware Classification.- Multimodal Deception and Lie Detection Using Linguistic and Acoustic Features, Deep Models, and Large Language Models.- Enhancing Dynamic Keystroke Authentication with GAN-Optimized Deep Learning Classifiers.- Selecting Representative Samples from Malware Datasets.- FLChain: Integration of Federated Learning and Blockchain for Building Unified Models for Privacy Preservation.- On the Steganographic Capacity of Selected Learning Models.- An Empirical Analysis of Federated Learning Models Subject to Label-Flipping Adversarial Attack.- An Empirical Analysis of Hidden Markov Models with Momentum.- Image-Based Malware Classification Using QR and Aztec Codes.- Keystroke Dynamics for User Identification.- Distinguishing Chatbot from Human.- Malware Classification using a Hybrid Hidden Markov Model-Convolutional Neural Network.- Temporal Analysis of Adversarial Attacks in Federated Learning.- Steganographic Capacity of Transformer Models.- Robustness of Selected Learning Models under Label Flipping Attacks.- Effectiveness of Adversarial Benign and Malware Examples in Evasion and Poisoning Attacks.- Quantum Computing Methods for Malware Detection.- Reducing the Surface for Adversarial Attacks in Malware Detectors.- XAI and Android Malware Models.

最近チェックした商品