Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22-25, 2024, Revised Selected Papers, Part III (Lecture Notes in Computer Science)

個数:

Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22-25, 2024, Revised Selected Papers, Part III (Lecture Notes in Computer Science)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 294 p.
  • 言語 ENG
  • 商品コード 9783031824869
  • DDC分類 006.31

Full Description

The three-volume set LNAI 15508-15510 constitutes the refereed proceedings of the 10th International Conference on Machine Learning, Optimization, and Data Science, LOD 2024, held in Castiglione della Pescaia, Italy, during September 22-25, 2024.

This year, in the LOD Proceedings decided to also include the papers of the fourth edition of the Symposium on Artificial Intelligence and Neuroscience (ACAIN 2024).

The 79 full papers included in this book were carefully reviewed and selected from 127 submissions. The LOD 2024 proceedings focus on machine learning, deep learning, AI, computational optimization, neuroscience and big data that includes invited talks, tutorial talks, special sessions, industrial tracks, demonstrations and oral and poster presentations of refereed papers.

Contents

.- Combining EEG oscillation analysis and explainable artificial intelligence for characterizing visuospatial attention.

.- Fully automatic meningioma segmentation with nnUNet using T1-weighted contrast-enhanced MR images by leveraging publicly available data and different types of annotations.

.- Multimodal Shannon Game with Images.

.- On the Role of Activation Functions in EEG-To-Text Decoder.

.- INVISIONS: Innovative Neuromorphic Vision Sensors in real-scenarios.

.- Path-weight-based Pruning and SHAP-based Explanations of an ANN with fMRI Data.

.- Deep learning in a bilateral brain with hemispheric specialisation.

.- A compact convolutional neural network for decoding EEG functional connectivity: application to motor imagery.

.- Inference of Abstraction for Human-like Probabilistic Reasoning.

.- Conformal Prediction for Uncertainty Quantification in Brain Age Estimation using Random Forests Quantile Regression on MRI Features of the HCP Young Adult.

.- Emotional Reactions To AI-generated Images: A Pilot Study Using Neuro physiological Measures.

.- Exploring Deep Learning Models for EEG Neural Decoding.

.- Transfer Learning for the Cognitive Staging Prediction in Alzheimer's Disease.

.- Inference of Abstraction for Human-like Logical Reasoning.

.- Sequence Learning with Analog Neuromorphic Multi-Compartment Neurons and On-Chip Structural STDP.

.- Understanding Sleep Dynamics Gathered from Wearable Devices with Ex plainable Recurrent Neural Networks.

.- Brain morphometry differences across sexes revealed through Explainable Artificial Intelligence: a Human Connectome Project Young Adult study.

.- Left/Right brain, human motor control and the implications for robotics.

.- Predicting Psychological Well-being in HCP Young Adult Cohort using Ran dom Forests Regression and SHAP with NIHTB Emotion Battery.

最近チェックした商品