Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22-25, 2024, Revised Selected Papers, Part II (Lecture Notes in Computer Science 15509) (2025. xiii, 364 S. XIII, 364 p. 90 illus., 82 illus. in color. 235 mm)

個数:

Machine Learning, Optimization, and Data Science : 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22-25, 2024, Revised Selected Papers, Part II (Lecture Notes in Computer Science 15509) (2025. xiii, 364 S. XIII, 364 p. 90 illus., 82 illus. in color. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 378 p.
  • 言語 ENG
  • 商品コード 9783031824838

Full Description

The three-volume set LNAI 15508-15510 constitutes the refereed proceedings of the 10th International Conference on Machine Learning, Optimization, and Data Science, LOD 2024, held in Castiglione della Pescaia, Italy, during September 22-25, 2024.

This year, in the LOD Proceedings decided to also include the papers of the fourth edition of the Symposium on Artificial Intelligence and Neuroscience (ACAIN 2024).

The 79 full papers included in this book were carefully reviewed and selected from 127 submissions. The LOD 2024 proceedings focus on machine learning, deep learning, AI, computational optimization, neuroscience and big data that includes invited talks, tutorial talks, special sessions, industrial tracks, demonstrations and oral and poster presentations of refereed papers.

Contents

.- Exploring Explainable Machine Learning for Enhanced Ship Performance Monitoring.

.- Identifying Potential Key Point of Sale Customers Using Network Centrality.

.- Hyperparameter Optimization for Driving Strategies Based on Reinforcement Learning.

.- Predicting Multiple Sclerosis Worsening Using Stratification Based and Time Dependent Variables Extracted from Routine Visits Data.

.- Predicting University Dropout Rates Using Machine Learning: UniCt case.

.- Investigating on Gradient Regularization for Testing Neural Networks.

.- SKIE SRL: Structured Key Information Extraction from Business Documents using Statistical Relational Learning.

.- Leveraging LLM powered Systems to Accelerate Mycobacterium tuberculosis Research Step One: From Documents to the Vectorstore.

.- Vegvisir: Probabilistic model (VAE) for viral T cell epitope prediction.

.- Tiny Long Short Term Memory Model for Resource Constrained Prediction of Battery Cycle Life.

.- Compact Artificial Neural Network Models for Predicting Protein Residue RNA Base Binding.

.- FWin transformer for dengue prediction under climate and ocean influence.

.- ENGinnSAND: A Reference Dataset for Monocular Depth Prediction of Line Structures.

.- Topological Layering of Mouse Brain Activity in Light Sheet Microscopy Datasets.

.- A Constraint Based Savings Algorithm for the Traveling Salesman Problem.

.- Gaussian process interpolation with conformal prediction: methods and comparative analysis.

.- Using embeddings of pre trained models for cross database dysarthria detection: supervised vs. self supervised approach.

.- Personality Profiling for Literary Character Dialogue Agents with Human Level Attributes.

.- Integrating Logit Space Embeddings for Reliable Out of Distribution Detection.

.- A Computational Framework for Identifying Salient Moments in Motion Capture Data.

.- Machine Learning for the Evaluation of the Nephrops Norvegicus Population.

.- Enhancing Cluster Based Topic Models through Parametric Dimensionality Reduction with Transformer Encoders.

.- Enhancing Arrhythmia Detection Using an Ensemble of Transformer Models for Heartbeat Classification.

.- Rapidly Computing Approximate Graph Convex Hulls via FastMap.

.- Deep Gaussian mixture model for unsupervised image segmentation.

.- Address Classification in E commerce Logistics Using Federated Learning.

最近チェックした商品