Fourier Analysis and Distributions : A First Course with Applications (Texts in Applied Mathematics)

個数:

Fourier Analysis and Distributions : A First Course with Applications (Texts in Applied Mathematics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 543 p.
  • 言語 ENG
  • 商品コード 9783031813108
  • DDC分類 515.2433

Full Description

This comprehensive book offers an accessible introduction to Fourier analysis and distribution theory, blending classical mathematical theory with a wide range of practical applications. Designed for undergraduate and beginning Master's students in mathematics and engineering. Key Features: Balanced Approach: The book is structured to include both theoretical and application-based chapters, providing readers with a solid understanding of the fundamentals alongside real-world scenarios. Diverse Applications: Topics include Fourier series, ordinary differential equations, AC circuit calculations, heat and wave equations, digital signal processing, and image compression. These applications demonstrate the versatility of Fourier analysis in solving complex problems in engineering, physics, and computational sciences. Advanced Topics: The text covers convolution theorems, linear filters, the Shannon Sampling Theorem, multi-carrier transmission with OFDM, wavelets, and a first insight into quantum mechanics. It also introduces readers to the finite element method (FEM) and offers an elementary proof of the Malgrange-Ehrenpreis theorem, showcasing advanced concepts in a clear and approachable manner. Practical Insights: Includes a detailed discussion of Hilbert spaces, orthonormal systems, and their applications to topics like the periodic table in chemistry and the structure of water molecules. The book also explores continuous and discrete wavelet transforms, providing insights into modern data compression and denoising techniques. Comprehensive Support: Appendices cover essential theorems in function theory and Lebesgue integration, complete with solutions to exercises, a reference list, and an index. With its focus on practical applications, clear explanations, and a wealth of examples, Fourier Analysis and Distributions bridges the gap between classical theory and modern computational methods. This text will appeal to students and practitioners looking to deepen their understanding of Fourier analysis and its far-reaching implications in science and engineering.

Contents

Preface.- Introduction.- Trigonometric Polynomials, Fourier Coefficients.- Fourier Series.- Calculating with Fourier Series.- Application Examples for Fourier Series.- Discrete Fourier Transforms, First Applications.- Convergence of Fourier Series.- Fundamentals of Distribution Theory.- Application Examples for Distributions.- The Fourier Transform.- Basics of Linear Filters.- Further Applications of the Fourier Transform.- The Malgrange-Ehrenpreis Theorem.- Outlook on Further Concepts.- A The Residue Theorem and the Fundamental Theorem of Algebra.- B Tools from Integration Theory.- C Solutions to the Exercises.- References.- List of Symbols and Physical Quantities.- Index.

最近チェックした商品