Optimization Strategies: A Decade of Metaheuristic Algorithm Development (Intelligent Systems Reference Library)

個数:

Optimization Strategies: A Decade of Metaheuristic Algorithm Development (Intelligent Systems Reference Library)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 447 p.
  • 言語 ENG
  • 商品コード 9783031810121
  • DDC分類 006.3

Full Description

This book is to explore the development of metaheuristic algorithms over the past decade, focusing on key advancements in their components and structural features, which have driven progress in search techniques. This analysis aims to provide readers with a thorough understanding of the fundamental aspects of these methods, which are essential for their practical application. To offer a broad perspective on the evolution of metaheuristic algorithms, this book reviews 11 specific algorithms developed by the evolutionary computation group at the University of Guadalajara over the past 10 years. These algorithms illustrate the most significant mechanisms and structures discussed in the academic and research communities during their development. By studying these examples, readers will gain valuable insights into the innovative methods and strategic improvements that have shaped the field. The book is designed from a teaching standpoint, making it suitable for undergraduate and postgraduate students in science, electrical engineering, or computational mathematics. Moreover, engineering practitioners unfamiliar with metaheuristic computation will appreciate how these techniques have been adapted to address complex real-world engineering problems, moving beyond theoretical constructs.

Contents

1.Introductory concepts of metaheuristic techniques.- 2.An algorithm for global optimization inspired by collective animal behavior.- 3.A swarm optimization algorithm inspired in the behavior of the social-spider.- 4.An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation.- 5.Harnessing Locust Swarm Dynamics for Optimization Algorithms.- 6.Improving Function Evaluation Efficiency with an Enhanced Evolutionary Algorithm.- 7.A Fuzzy Logic-Inspired Metaheuristic Method for Enhanced Optimization.- 8.Modeling Optimization Techniques Inspired by Yellow Saddle Goatfish Behavior.- 9.An optimization algorithm guided by a machine learning approach.- 10.An improved Simulated Annealing algorithm based on ancient metallurgy techniques.- 11.Agent-based modeling approaches as metaheuristic methods.- 12.Evolutionary-Mean shift algorithm for dynamic multimodal function optimization.

最近チェックした商品