Generative Machine Learning Models in Medical Image Computing

個数:

Generative Machine Learning Models in Medical Image Computing

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 382 p.
  • 言語 ENG
  • 商品コード 9783031809644
  • DDC分類 616.07540285631

Full Description

Generative Machine Learning Models in Medical Image Computing" provides a comprehensive exploration of generative modeling techniques tailored to the unique demands of medical imaging. This book presents an in-depth overview of cutting-edge generative models such as GANs, VAEs, and diffusion models, examining how they enable groundbreaking applications in medical image synthesis, reconstruction, and enhancement. Covering diverse imaging modalities like MRI, CT, and ultrasound, it illustrates how these models facilitate improvements in image quality, support data augmentation for scarce datasets, and create new avenues for predictive diagnostics.

Beyond technical details, the book addresses critical challenges in deploying generative models for healthcare, including ethical concerns, interpretability, and clinical validation. With a strong focus on real-world applications, it includes case studies and implementation guidelines, guiding readers in translating theory into practice. By addressing model robustness, reproducibility, and clinical utility, this book is an essential resource for researchers, clinicians, and data scientists seeking to leverage generative models to enhance biomedical imaging and deliver impactful healthcare solutions. Combining technical rigor with practical insights, it offers a roadmap for integrating advanced generative approaches in the field of medical image computing.

Contents

Part I Segmentation.- Synthesis of annotated data for medical image segmentation.- Diffusion Models For Histopathological Image Generation.- Generative AI Techniques for Ultrasound Image Reconstruction.- Part II Detection and Classification.- Vision Language Pre training from Synthetic Data.- Diffusion models for inverse problems in medical imaging.- Virtual Elastography Ultrasound via Generative Adversarial Network and its Application to Breast Cancer Diagnosis.- Generative Adversarial Networks for Brain MR Image Synthesis and Its Clinical Validation on Multiple Sclerosis.- Histopathological Synthetic Augmentation with Generative Models.- Part III Image Super resolution and Reconstruction.- Enhancing PET with Image Generation Techniques Generating Standard dose PET from Low dose PET.- EyesGAN Synthesize human face from human eyes.- Deep Generative Models for 3D Medical Image Synthesis.- Part IV Various Applications.- Cross Modal Attention Fusion based Generative Adversarial Network for text to image synthesis.- CHeart A Conditional Spatio Temporal Generative Model for Cardiac Anatomy.- Generative Models for Synthesizing Anatomical Plausible 3D Medical Images.- Diffusion Probabilistic Models for Image Formation in MRI.- Embedding 3D CT Prior into X ray Imaging Using Generative Adversarial Networks.

最近チェックした商品