Materials Informatics I : Methods (Challenges and Advances in Computational Chemistry and Physics 39) (2025. xvii, 288 S. XVII, 288 p. 66 illus., 53 illus. in color. 235 mm)

個数:

Materials Informatics I : Methods (Challenges and Advances in Computational Chemistry and Physics 39) (2025. xvii, 288 S. XVII, 288 p. 66 illus., 53 illus. in color. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 338 p.
  • 言語 ENG
  • 商品コード 9783031787355

Full Description

This contributed volume explores the integration of machine learning and cheminformatics within materials science, focusing on predictive modeling techniques. It begins with foundational concepts in materials informatics and cheminformatics, emphasizing quantitative structure-property relationships (QSPR). The volume then presents various methods and tools, including advanced QSPR models, quantitative read-across structure-property relationship (q-RASPR) models, optimization strategies with minimal data, and in silico studies using different descriptors. Additionally, it explores machine learning algorithms and their applications in materials science, alongside innovative modeling approaches for quantum-theoretic properties. Overall, the book serves as a comprehensive resource for understanding and applying machine learning in the study and development of advanced materials and is a useful tool for students, researchers and professionals working in these areas.

Contents

Part 1. Introduction.- Introduction to Materials Informatics.- Introduction to Cheminformatics for Predictive Modeling.- Introduction to machine learning for predictive modeling of organic materials.- Quantitative Structure-Property Relationships (QSPR) for Materials Science.- Part 2. Methods and Tools.- Quantitative Structure-Property Relationships (QSPR) and Machine Learning (ML) Models for Materials Science.- Optimising Materials Properties with Minimal Data: Lessons from Vanadium Catalyst Modelling.- In silico QSPR studies based on CDFT and IT descriptors.- Applications of quantitative read-across structure-property relationship (q-RASPR) modeling in the field of materials science.- Machine Learning algorithms for applications in Materials Science I.-  Machine Learning algorithms for applications in Materials Science II.- Structure-property modeling of quantum-theoretic properties of benzenoid hydrocarbons by means of connection-related graphical descriptors.- Machine learning tools and Web services for Materials Science modelling.

最近チェックした商品