Materials Informatics III : Polymers, Solvents and Energetic Materials (Challenges and Advances in Computational Chemistry and Physics)

個数:

Materials Informatics III : Polymers, Solvents and Energetic Materials (Challenges and Advances in Computational Chemistry and Physics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 371 p.
  • 言語 ENG
  • 商品コード 9783031787232

Full Description

This contributed volume focuses on the application of machine learning and cheminformatics in predictive modeling for organic materials, polymers, solvents, and energetic materials. It provides an in-depth look at how machine learning is utilized to predict key properties of polymers, deep eutectic solvents, and ionic liquids, as well as to improve safety and performance in the study of energetic and reactive materials. With chapters covering polymer informatics, quantitative structure-property relationship (QSPR) modeling, and computational approaches, the book serves as a comprehensive resource for researchers applying predictive modeling techniques to advance materials science and improve material safety and performance.

Contents

Part 1. Introduction.- Introduction to Machine Learning for Predictive Modeling II.- Introduction to predicting properties of organic materials.- Part 2. Cheminformatic and Machine Learning Models for Polymers.- Machine Learning Applications in Polymer Informatics - An Overview.- Applications of predictive modeling for selected properties of polymers.- Polymer Property Prediction using Machine Learning.- Applications of predictive modeling for polymers.- Part 3. Cheminformatic and Machine Learning Models for Solvents.- Applications of predictive QSPR modeling for deep eutectic solvents.- Applications of predictive modeling for various properties of ionic liquids.- Part 4. Cheminformatic and Machine Learning Models for Energetic Materials.- Improving Safety with Molecular-Scale Computational Approaches for Energetic and Reactive Materials.- Predictive modeling for energetic materials.- Modeling the performance of energetic materials.- Applications of predictive modeling for energetic materials.

最近チェックした商品