Linear Algebra in Context : A Gateway to the Discrete Fourier Transform, Bilinear and Sesquilinear Forms, Algebras, Tensors and Mechanics (Springer Undergraduate Texts in Mathematics and Technology) (2025. xxiv, 708 S. XXIV, 708 p. 43 illus., 28 illus. in color. 235 mm)

個数:

Linear Algebra in Context : A Gateway to the Discrete Fourier Transform, Bilinear and Sesquilinear Forms, Algebras, Tensors and Mechanics (Springer Undergraduate Texts in Mathematics and Technology) (2025. xxiv, 708 S. XXIV, 708 p. 43 illus., 28 illus. in color. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 706 p.
  • 言語 ENG
  • 商品コード 9783031784231

Full Description

This text combines a compact linear algebra course with a serious dip into various physical applications. It may be used as a primary text for a course in linear algebra or as a supplementary text for courses in applied math, scientific computation, mathematical physics, or engineering.

The text is divided into two parts.

Part 1 comprises a fairly standard presentation of linear algebra. Chapters 1-3 contain the core mathematical concepts typical for an introductory course while Chapter 4 contains numerous "short" applications. Chapter 5 is a repository of standard facts about matrix factorization and quadratic forms together with the "connective tissue" of topics needed for a coherent discussion, including the singular value decomposition, the Jordan normal form, Sylvester's law of inertia and the Witt theorems. Part I contains around 300 exercises, found throughout the text, and are an integral part of the presentation.

Part 2 features deeper applications. Each of these "large" applications require no more than linear algebra to discuss, though the style and arrangement of results would be challenging to a beginning student and more appropriate for a second or later course. Chapter 6 provides an introduction to the discrete Fourier transform, including the fast Fourier algorithm. Chapter 7 is a thorough introduction to isometries and some of the classical groups, and how these groups have come to be important in physics. Chapter 8 is a fairly detailed look at real algebras and completes a presentation of the classical Lie groups and algebras. Chapter 9 is a careful discussion of tensors on a finite-dimensional vector space, finishing with the Hodge Star operator and the Grassmann algebra. Finally, Chapter 10 gives an introduction to classical mechanics including Noether's first theorem and emphasizes how the classical Lie groups, discussed in earlier chapters, become important in this setting.

The Chapters of Part 2 are intended to give a sense of the ubiquity, of the indispensable utility, of linear algebra in modern science and mathematics and some feel for way it is actually used in disparate subject areas. Twelve appendices are included. The last seven refer to MATLAB® code which, though not required and rarely mentioned in the text,  can be used to augment understanding. For example, fifty-five MATLAB functions implement every tensor operation from  Chapter 9. A zipped file of all code is available for download from the author's website.

Contents

Preface.- Part I Linear Algebra.- 1 Basics.- 2 Vector Spaces.- 3 Bilinear and Sesquilinear Forms.- 4 Shorter Applications.- 5 Factorization.- Part II Extended Applications.- 6 The Discrete Fourier Transform.- 7 Geometry Associated with Real Bilinear Forms.- Algebras.- 9 Tensors.- 10 Mechanics: Newton, Lagrange, Hamilton, Noether.- A Permutation and the Signum Function.- B Groups.- C Polynomial Roots are Continuous in the Coefficients.- D The Fundamental Theorem of Algebra.-  E There is a Basis for Every Vector Space.- F The GNU Linear Programming Kit (GLPK).- G MATLAB Code for Adjunct Matrices.- H MATLAB Code for Rotations and Euler Angles.- I. MATLAB Code for Lorentz Matrices.- J MATLAB Code to Illustrate DFT Facts.- K MATLAB Code for Quaternions, Octonions and Gamma Matrices.- L MATLAB Code for Tensor Operations.- Suggested Further Reading.- References.- Index.

最近チェックした商品