Pattern Recognition : 27th International Conference, ICPR 2024, Kolkata, India, December 1-5, 2024, Proceedings, Part II (Lecture Notes in Computer Science)

個数:
  • ポイントキャンペーン

Pattern Recognition : 27th International Conference, ICPR 2024, Kolkata, India, December 1-5, 2024, Proceedings, Part II (Lecture Notes in Computer Science)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 480 p.
  • 言語 ENG
  • 商品コード 9783031781650

Full Description

The multi-volume set of LNCS books with volume numbers 15301-15333 constitutes the refereed proceedings of the 27th International Conference on Pattern Recognition, ICPR 2024, held in Kolkata, India, during December 1-5, 2024.

The 963 papers presented in these proceedings were carefully reviewed and selected from a total of 2106 submissions. They deal with topics such as Pattern Recognition; Artificial Intelligence; Machine Learning; Computer Vision; Robot Vision; Machine Vision; Image Processing; Speech Processing; Signal Processing; Video Processing; Biometrics; Human-Computer Interaction (HCI); Document Analysis; Document Recognition; Biomedical Imaging; Bioinformatics.

Contents

CHATTY: Coupled Holistic Adversarial Transport Terms with Yield for Unsupervised Domain Adaptation.- FedSOKD-TFA: Federated Learning with Stage-Optimal Knowledge Distillation and Three-Factor Aggregation.- DualViT: A Hierarchical Vision Transformer for Broad and Fine Class Embeddings.- Establishing Interconnections of Similarity-based Classifiers for Multi-label Learning with Missing Labels.- GL-TSVM: A robust and smooth twin support vector machine with guardian loss function.- An Approach Towards Learning K-means-friendly Deep Latent Representation.- PulmoNetX: A Hybrid Vision Transformer Approach for Multi-scale Spatial Feature Reduction in Pneumonia Classification.- Federated K-Means clustering.- Feature selection voting strategies and hyperparameter tuning in a boosting classification.- Advancing 3D Mesh Analysis: A Graph Learning Approach for Intersecting 3D Geometry Classification.- Efficient Classification of Histopathology Images using Highly Imbalanced Data.- GenFormer - Generated Images are All You Need to Improve Robustness of Transformers on Small Datasets.- Recognizing Patterns of Parkinson's Disease using Online Trail Making Test and Response Dynamics - Preliminary Study.- Regularization of Interpolation Kernel Machines.- Task Success Classification with Final State of Future Prediction for Robot Control Planning.- EGOFALLS: A visual-audio dataset and benchmark for fall detection using egocentric cameras.- Towards Unbiased Minimal Cluster Analysis of Categorical-and-Numerical Attribute Data.- PolSAR Image Classification Using Complex-Valued Squeeze and Excitation Network.- Probabilistic Fusion Framework Combining CNNs and Graphical Models for Multiresolution Satellite and UAV Image Classification.- Multiscale Color Guided Attention Ensemble Classifier for Age-Related Macular Degeneration using Concurrent Fundus and Optical Coherence Tomography images.- PolSAR Image Classification Using Superpixel Profile and CNN.- Know How Much Sensitive Precision and Recall Validity Measures Are?.- Optimizing Software Release Management with GPT-Enabled Log Anomaly Detection.- Patch-based Prototypical Cross-Scale Attention Network for Anomaly Detection.- Semi-Structured Pruning of Graph Convolutional Networks for Skeleton-based Recognition.- Data Pruning via Separability, Integrity, and Model Uncertainty-Aware Importance Sampling.- Label-Specific Multi-Label Classification with Entropy Guided Clustering.- FAT-LSTM: A Multimodal Data Fusion Model with Gating and Attention-Based LSTM for Time-Series Classification.- Fusing Image and Text Features for Scene Sentiment Analysis using Whale-Honey Badger Optimization Algorithm (WHBOA).- EncodeNet: A Framework for Boosting DNN Accuracy with Entropy-driven Generalized Converting Autoencoder.

最近チェックした商品