Contributions Presented at the International Conference on Computing, Communication, Cybersecurity and AI, July 3-4, 2024, London, UK : The C3AI 2024 (Lecture Notes in Networks and Systems) (2025)

個数:

Contributions Presented at the International Conference on Computing, Communication, Cybersecurity and AI, July 3-4, 2024, London, UK : The C3AI 2024 (Lecture Notes in Networks and Systems) (2025)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 826 p.
  • 商品コード 9783031744426

Full Description

This book offers an in-depth exploration of cutting-edge research across the interconnected fields of computing, communication, cybersecurity, and artificial intelligence. It serves as a comprehensive guide to the technologies shaping our digital world, providing both a profound understanding of these domains and practical strategies for addressing their challenges. The content is drawn from the International Conference on Computing, Communication, Cybersecurity and AI (C3AI 2024), held in London, UK, from July 3 to 4, 2024. The conference attracted 66 submissions from 17 countries, including the USA, UK, Canada, Brazil, India, China, Germany, and Spain. Of these, 47 high-calibre papers were rigorously selected through a meticulous review process, where each paper received three to four reviews to ensure quality and relevance. This book is an essential resource for readers seeking a thorough and timely review of the latest advancements and trends in computing, communication, cybersecurity, and artificial intelligence.

Contents

Security model for IoT applications IoTSeMo.- DAN Deep Neural Network-based Application Mapping for Optimized Network-on-Chip Design.- Threat Modelling in  Virtual Assistant Hub Devices.- Generate Unnoticeable Adversarial Examples on Audio Classification Models with Multi perspective Objectives.- Prior enhanced Semi supervised Federated Learning for IoT Intrusion Detection A Game Theory and Comparative Learning based Approach.- An empirical study on Insider Threats Towards Crime Prevention through Environmental Design CPTED A student case study.- Utilizing Machine Learning and Deep Learning Techniques for the Detection of Distributed Denial of Service DDoS Attacks.- Inspecting software architecture design styles to infer threat models and inform likely attacks.

最近チェックした商品