Artificial Neural Networks and Machine Learning - ICANN 2024 : 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17-20, 2024, Proceedings, Part IV (Lecture Notes in Computer Science) (2024)

個数:

Artificial Neural Networks and Machine Learning - ICANN 2024 : 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17-20, 2024, Proceedings, Part IV (Lecture Notes in Computer Science) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 428 p.
  • 言語 ENG
  • 商品コード 9783031723407
  • DDC分類 006.32

Full Description

The ten-volume set LNCS 15016-15025 constitutes the refereed proceedings of the 33rd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2024, held in Lugano, Switzerland, during September 17-20, 2024.

The 294 full papers and 16 short papers included in these proceedings were carefully reviewed and selected from 764 submissions. The papers cover the following topics: 

Part I - theory of neural networks and machine learning; novel methods in machine learning; novel neural architectures; neural architecture search; self-organization; neural processes; novel architectures for computer vision; and fairness in machine learning.

Part II - computer vision: classification; computer vision: object detection; computer vision: security and adversarial attacks; computer vision: image enhancement; and computer vision: 3D methods.

Part III - computer vision: anomaly detection; computer vision: segmentation; computer vision: pose estimation and tracking; computer vision: video processing; computer vision: generative methods; and topics in computer vision.

Part IV - brain-inspired computing; cognitive and computational neuroscience; explainable artificial intelligence; robotics; and reinforcement learning.

Part V - graph neural networks; and large language models.

Part VI - multimodality; federated learning; and time series processing.

Part VII - speech processing; natural language processing; and language modeling.

Part VIII - biosignal processing in medicine and physiology; and medical image processing.

Part IX - human-computer interfaces; recommender systems; environment and climate; city planning; machine learning in engineering and industry; applications in finance; artificial intelligence in education; social network analysis; artificial intelligence and music; and software security.

Part X - workshop: AI in drug discovery; workshop: reservoir computing; special session: accuracy, stability, and robustness in deep neural networks; special session: neurorobotics; and special session: spiking neural networks.

Contents

.- Brain-inspired ComputingBrain-inspired Computing.

.- A Multiscale Resonant Spiking Neural Network for Music Classification.

.- Masked Image Modeling as a Framework for Self-Supervised Learning across Eye Movements.

.- Serial Order Codes for Dimensionality Reduction in the Learning of Higher-Order Rules and Compositionality in Planning.

.- Sparsity aware Learning in Feedback-driven Differential Recurrent Neural Networks.

.- Towards Scalable GPU-Accelerated SNN Training via Temporal Fusion.

.- Cognitive and Computational Neuroscience.

.- Analysis of a Generative Model of Episodic Memory Based on Hierarchical VQ-VAE and Transformer.

.- Biologically-plausible Markov Chain Monte Carlo Sampling from Vector Symbolic Algebra-encoded Distributions.

.- Dynamic Graph for Biological Memory Modeling: A System-Level Validation.

.- EEG features learned by convolutional neural networks reflect alterations of social stimuli processing in autism.

.- Estimate of the Storage Capacity of q-Correlated Patterns in Hopfield Neural Networks.

.- An Accuracy-Shaping Mechanism for Competitive Distributed Learning.

.- Explainable Artificial Intelligence.

.- Counterfactual Contrastive Learning for Fine Grained Image Classification. 

.- Enhancing Counterfactual Image Generation Using Mahalanobis Distance with Distribution Preferences in Feature Space.

.- Exploring Task-Specific Dimensions in Word Embeddings Through Automatic Rule Learning.

.- Generally-Occurring Model Change for Robust Counterfactual Explanations.

.- Model Based Clustering of Time Series Utilizing Expert ODEs.

.- Towards Generalizable and Interpretable AI-Modified Image Detectors.

.- Understanding Deep Networks via Multiscale Perturbations.

.- Robotics.

.- Details Make a Difference: Object State-Sensitive Neurorobotic Task Planning.

.- Neural Formation A*: A Knowledge-Data Hybrid-Driven Path Planning Algorithm for Multi-agent Formation Cooperation.

.- Robust Navigation for Unmanned Surface Vehicle Utilizing Improved Distributional Soft Actor-Critic.

.- When Robots Get Chatty: Grounding Multimodal Human-Robot Conversation and Collaboration.

.- Reinforcement Learning.

.- Asymmetric Actor-Critic for Adapting to Changing Environments in Reinforcement Learning. 

.- Building surrogate models using trajectories of agents trained by Reinforcement Learning.

.- Demand-Responsive Transport Dynamic Scheduling Optimization Based on Multi-Agent Reinforcement Learning under Mixed Demand.

.- Dual Action Policy for Robust Sim-to-Real Reinforcement Learning.

.- Enhancing Visual Generalization in Reinforcement Learning with Cycling Augmentation.

.- Speeding up Meta-Exploration via Latent Representation.

最近チェックした商品