Neural-Symbolic Learning and Reasoning : 18th International Conference, NeSy 2024, Barcelona, Spain, September 9-12, 2024, Proceedings, Part I (Lecture Notes in Artificial Intelligence) (2024)

個数:

Neural-Symbolic Learning and Reasoning : 18th International Conference, NeSy 2024, Barcelona, Spain, September 9-12, 2024, Proceedings, Part I (Lecture Notes in Artificial Intelligence) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 421 p.
  • 商品コード 9783031711664

Full Description

This book constitutes the refereed proceedings of the 18th International Conference on Neural-Symbolic Learning and Reasoning, NeSy 2024, held in Barcelona, Spain during September 9-12th, 2024.

The 30 full papers and 18 short papers were carefully reviewed and selected from 89 submissions, which presented the latest and ongoing research work on neurosymbolic AI. Neurosymbolic AI aims to build rich computational models and systems by combining neural and symbolic learning and reasoning paradigms. This combination hopes to form synergies among their strengths while overcoming their

complementary weaknesses.

Contents

.- Context Helps: Integrating context information with videos in a graph-based HAR framework.

.- Assessing Logical Reasoning Capabilities of Encoder-Only Transformer Models.

.- Variable Assignment Invariant Neural Networks for Learning Logic Programs.

.- ViPro: Enabling and Controlling Video Prediction for Complex Dynamical Scenarios using Procedural Knowledge.

.- The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning.

.- A semantic loss for ontology classification.

.- On the use of Neurosymbolic AI for Defending against Cyber Attacks.

.- Bayesian Inverse Graphics for Few-Shot Concept Learning.

.- Simple and Effective Transfer Learning for Neuro-Symbolic Integration.

.- Ethical Reward Machines.

.- Embed2Rule - Scalable Neuro-Symbolic Learning via Latent Space Weak-Labelling.

.- ULLER: A Unified Language for Learning and Reasoning.

.- Disentangling Visual Priors: Unsupervised Learning of Scene Interpretations with Compositional Autoencoder.

.- Probing LLMs for logical reasoning.

.- Enhancing Machine Learning Predictions through Knowledge Graph Embeddings.

.- Terminating Differentiable Tree Experts.

.- Valid Text-to-SQL Generation with Unification-based DeepStochLog.

.- Enhancing Geometric Ontology Embeddings for EL++ with Negative Sampling and Deductive Closure Filtering.

.- Lattice-preserving ALC ontology embeddings.

.- Towards Learning Abductive Reasoning using VSA Distributed Representations.

.- Learning to Solve Abstract Reasoning Problems with Neurosymbolic Program Synthesis and Task Generation.

.- Leveraging Neurosymbolic AI for Slice Discovery.

   

最近チェックした商品