Theory and Practice of Quality Assurance for Machine Learning Systems : An Experiment-Driven Approach (2024)

個数:

Theory and Practice of Quality Assurance for Machine Learning Systems : An Experiment-Driven Approach (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 182 p.
  • 言語 ENG
  • 商品コード 9783031700071

Full Description

This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an "experiment first" approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced.

The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software.

Contents

1. Introduction.- 2. Scientific Analysis of ML Systems.- 3. Motivation and Best Practices for Machine Learning Designers and Testers.- 4. Unit Test vs. System Test of ML Based Systems.- 5. ML Testing.- 6. Principles of Drift Detection and ML Solution Retraining.- 7. Drift Detection by Measuring Distribution Differences.- 8. Sequential Drift Detection.- 9. Drift in Characterizations of Data.- 10. A Framework Analysis for Alternating Components and Drift.- 11. Optimal Integration of the ML Solution in the Business Decision Process.- 12. Testing Solutions Based on Large Language Models.- 13. A Detailed Chatbot Example.

最近チェックした商品