Belief Functions: Theory and Applications : 8th International Conference, BELIEF 2024, Belfast, UK, September 2-4, 2024, Proceedings (Lecture Notes in Computer Science) (2024)

個数:

Belief Functions: Theory and Applications : 8th International Conference, BELIEF 2024, Belfast, UK, September 2-4, 2024, Proceedings (Lecture Notes in Computer Science) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 294 p.
  • 言語 ENG
  • 商品コード 9783031679766

Full Description

This book constitutes the refereed proceedings of the 8th International Conference on Belief Functions, BELIEF 2024, held in Belfast, UK, in September 2-4, 2024.

The 30 full papers presented in this book were carefully selected and reviewed from 36 submissions. The papers cover a wide range on theoretical aspects on Machine learning; Statistical inference; Information fusion and optimization; Measures of uncertainty, conflict and distances; Continuous belief functions, logics, computation.

Contents

.- Machine learning. 

.- Deep evidential clustering of images.

.- Incremental Belief-peaks Evidential Clustering.

.- Imprecise Deep Networks for Uncertain Image Classification.

.- Dempster-Shafer Credal Probabilistic Circuits.

.- Uncertainty quantification in regression neural networks using likelihood-based belief functions.

.- An evidential time-to-event prediction model based on Gaussian random fuzzy numbers.

.- Object Hallucination Detection in Large Vision Language Models via Evidential Conflict.

.- Multi-oversampling with evidence fusion for imbalanced data classification.

.- An Evidence-based Framework For Heterogeneous Electronic Health Records: A Case Study In Mortality Prediction.

.- Conflict Management in a Distance to Prototype-Based Evidential Deep Learning.

.- A Novel Privacy Preserving Framework for Training Dempster-Shafer Theory-based Evidential Deep Neural Network.

.- Statistical inference. 

.- Large-sample theory for inferential models: A possibilistic Bernstein-von Mises theorem.

.- Variational approximations of possibilistic inferential models.

.- Decision theory via model-free generalized fiducial inference.

.- Which statistical hypotheses are afflicted with false confidence?.

.- Algebraic expression for the relative likelihood-based evidential prediction of an ordinal variable.

.- Information fusion and optimization. 

.- Why Combining Belief Functions on Quantum Circuits?.

.- SHADED: Shapley Value-based Deceptive Evidence Detection in Belief Functions.

.- A Novel Optimization-Based Combination Rule for Dempster-Shafer Theory.

.- Fusing independent inferential models in a black-box manner.

.- Optimization under Severe Uncertainty: a Generalized Minimax Regret Approach for Problems with Linear Objectives.

.- Measures of uncertainty, conflict and distances. 

.- A mean distance between elements of same class for rich labels.

.- Threshold Functions and Operations in the Theory of Evidence.

.- Mutual Information and Kullback-Leibler Divergence in the Dempster-Shafer Theory.

.- An OWA-based Distance Measure for Ordered Frames of Discernment.

.- Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks using Belief Functions.

.- Continuous belief functions, logics, computation. 

.- Gamma Belief Functions.

.- Combination of Dependent Gaussian Random Fuzzy Numbers.

.- A 3-valued Logical Foundation for Evidential Reasoning.

.- Accelerated Dempster Shafer using Tensor Train Representation.

最近チェックした商品