Medical Image Understanding and Analysis : 28th Annual Conference, MIUA 2024, Manchester, UK, July 24-26, 2024, Proceedings, Part II (Lecture Notes in Computer Science) (2024)

個数:

Medical Image Understanding and Analysis : 28th Annual Conference, MIUA 2024, Manchester, UK, July 24-26, 2024, Proceedings, Part II (Lecture Notes in Computer Science) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 458 p.
  • 商品コード 9783031669576

Full Description

This two-volume set LNCS 14859-14860 constitutes the proceedings of the 28th Annual Conference on Medical Image Understanding and Analysis, MIUA 2024, held in Manchester, UK, during July 24-26, 2024.

The 59 full papers included in this book were carefully reviewed and selected from 93 submissions. They were organized in topical sections as follows: 

Part I : Advancement in Brain Imaging; Medical Images and Computational Models; and Digital Pathology, Histology and Microscopic Imaging.

Part II : Dental and Bone Imaging; Enhancing Low-Quality Medical Images; Domain Adaptation and Generalisation; and Dermatology, Cardiac Imaging and Other Medical Imaging.

Contents

.- Dental and Bone Imaging.

.- Enhancing Cephalometric Landmark Detection with a Two-Stage Cascaded CNN on Multi-Resolution Multi-Modal Data.

.- Enhancing Dental Diagnostics: Advanced Image Segmentation Models for Teeth Identification and Enumeration.

.- 3D Bone Shape from CT-Scans Provides an Objective Measure of Osteoarthritis Severity: data from the IMI-APPROACH study.

.- CNN-based osteoporotic vertebral fracture prediction and risk assessment on MrOS CT data: Impact of CNN model architecture.

.- Analysis of leg bones from whole body DXA in the UK Biobank.

.- H-FCBFormer: Hierarchical Fully Convolutional Branch Transformer for Occlusal Contact Segmentation with Articulating Paper.

.- Enhancing Low-Quality Medical Images.

.- Ultrasound Confidence Maps with Neural Implicit Representation.

.- Blurry Boundary Segmentation with Semantic-guided Feature Learning.

.- SA-GCN: Scale Adaptive Graph Convolutional Network for ASD Identification.

.- Resolution-Invariant Medical Image Segmentation using Fourier Neural Operators.

.- YOLO-TL:A Tiny Object Segmentation Framework for Low Quality Medical Images.

.- Superresolution of real-world multiscale bone CT verified with clinical bone measures.

.- Reconstructing MRI parameters using a noncentral chi noise model.

.- Domain Adaptation and Generalisation.

.- AdaptiveSAM: Towards Efficient Tuning of SAM for Surgical Scene Segmentation.

.- Analysing Variables for 90-Day Functional-Outcome Prediction of Endovascular Thrombectomy.

.- Multimodal Deformable Image Registration for Long-COVID Analysis Based on Progressive Alignment and Multi-perspective Loss.

.- Confounder-Aware Image Synthesis for Pathology Segmentation in New Magnetic Resonance Imaging Sequences.

.- Prediction of total metabolic tumor volume from tissue-wise FDG-PET/CT projections, interpreted using cohort saliency analysis.

.- Expert model prediction through feature matching.

.- Enhancing Cross-Institute Generalisation of GNNs in Histopathology through Multiple Embedding Graph Augmentation (MEGA).

.- PMT: Partial-Modality Translation Based on Diffusion Models for Prostate Magnetic Resonance and Ultrasound Image Registration.

.- Fine-grained Medical Image Synthesis with Dual-Attention Adversarial Learning.

.- Dermatology, Cardiac Imaging and Other Medical Imaging.

.- Enhancing Skin Lesion Classification: A Self-Attention Fusion Approach with Vision Transformer.

.- Optimizing Melanoma Prognosis through Synergistic Preprocessing and Deep Learning Architecture for Dermoscopic Thickness Prediction.

.- The Effect of Image Preprocessing Algorithms on Diabetic Foot Ulcer Classification.

.- Synthetic Balancing of Cardiac MRI Datasets.

.- EchoVisuAL: Efficient Segmentation of Echocardiograms using Deep Active Learning.

.- Improving Automated Ultrasound Infant Hip Screening using an Integrated Clinical Classification Loss.

.- Deep learning models to automate the scoring of hand radiographs for Rheumatoid Arthritis.

.- Radiomic Analysis for Prediction of Preterm Birth.

.- Hierarchical multi-label learning for musculoskeletal phenotyping in mice.

.- MIUA 2023 Overlooked Paper.

.- Prediction of Incident Atrial Fibrillation in Population with Ischemic Heart Disease using Machine Learning with Radiomics and ECG Markers.

最近チェックした商品