Medical Image Understanding and Analysis : 28th Annual Conference, MIUA 2024, Manchester, UK, July 24-26, 2024, Proceedings, Part I (Lecture Notes in Computer Science) (2024)

個数:

Medical Image Understanding and Analysis : 28th Annual Conference, MIUA 2024, Manchester, UK, July 24-26, 2024, Proceedings, Part I (Lecture Notes in Computer Science) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 420 p.
  • 商品コード 9783031669545

Full Description

This two-volume set LNCS 14859-14860 constitutes the proceedings of the 28th Annual Conference on Medical Image Understanding and Analysis, MIUA 2024, held in Manchester, UK, during July 24-26, 2024.

The 59 full papers included in this book were carefully reviewed and selected from 93 submissions. They were organized in topical sections as follows: 

Part I : Advancement in Brain Imaging; Medical Images and Computational Models; and Digital Pathology, Histology and Microscopic Imaging.

Part II : Dental and Bone Imaging; Enhancing Low-Quality Medical Images; Domain Adaptation and Generalisation; and Dermatology, Cardiac Imaging and Other Medical Imaging.

Contents

.- Advancement in Brain Imaging.

.- Robust Multi-Modal Registration of Cerebral Vasculature.

.- Towards Segmenting Cerebral Arteries from Structural MRI.

.- Stochastic Uncertainty Quantification techniques fail to account for Inter-Analyst Variability in White Matter Hyperintensity segmentation.

.- Learning-based MRI Response Predictions from OCT Microvascular Models to Replace Simulation-based Frameworks.

.- Multimodal 3D Brain Tumor Segmentation with Adversarial Training and Conditional Random Field.

.- DeepDSMRI: Deep Domain Shift analyzer for MRI.

.- Self-Supervised Pretraining for Cortial Surface Analysis.

.- Spike Detection in Deep Brain Stimulation Surgery with Convolutional Neural Networks.

.- Medical Images and Computational Models.

.- Micro-CT Imaging Techniques for Visualizing Pinniped Mystacial Pad Musculature.

.- SCorP: Statistics-Informed Dense Correspondence Prediction Directly from Unsegmented Medical Images.

.- JointViT: Modeling Oxygen Saturation Levels with Joint Supervision on Long-Tailed OCTA.

.- Identification of skin diseases based on blind chromophore separation and artificial intelligence.

.- Generating Chest Radiology Report Findings using a Multimodal Method.

.- Image processing and machine learning techniques for Chagas disease detection and identification.

.- Ensemble deep learning models for segmentation of prostate zonal anatomy and pathologically suspicious area.

.- U-Net-driven image reconstruction for range verification in proton therapy.

.- DynaMMo: Dynamic Model Merging for Efficient Class Incremental Learning for Medical Images.

.- PDSE: A Multiple Lesion Detector for CT Images Using PANet and Deformable Squeeze-and-Excitation Block.

.- What is the Best Way to Fine-tune Self-supervised Medical Imaging Models.

.- Digital Pathology, Histology and Microscopic Imaging.

.- RoTIR: Rotation-Equivariant Network and Transformers for Zebrafish Scale Image Registration.

.- GRU-Net: Gaussian attention aided dense skip connection based multiResU-Net for Breast Histopathology Image Segmentation.

.- Bounding Box is all you need: Learning to Segment Cells in 2D Microscopic Images via Box Annotations.

.- Leveraging Foundation Models for Enhanced Detection of Colorectal Cancer Biomarkers in Small Datasets.

.- SPADESegResNet: Harnessing Spatially-adaptive Normalization for Breast Cancer Semantic Segmentation.

.- Unsupervised Anomaly Detection on Histopathology Images Using Adversarial Learning and Simulated Anomaly.

.- Nuclei-Location Based Point Set Registration of Multi-Stained Whole Slide Images.

.- CellGenie: An end-to-end Pipeline for Synthetic Cellular Data Generation and Segmentation: A Use Case for Cell Segmentation in Microscopic Images.

.- A Line Is All You Need: Weak Supervision For 2.5D Cell Segmentation.

最近チェックした商品