Developments in Statistical Modelling (Contributions to Statistics) (2024)

個数:

Developments in Statistical Modelling (Contributions to Statistics) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 270 p.
  • 言語 ENG
  • 商品コード 9783031657221

Full Description

This volume on the latest developments in statistical modelling is a collection of refereed papers presented at the 38th International Workshop on Statistical Modelling, IWSM 2024, held from 14 to 19 July 2024 in Durham, UK. The contributions cover a wide range of topics in statistical modelling, including generalized linear models, mixture models, regularization techniques, hidden Markov models, smoothing methods, censoring and imputation techniques, Gaussian processes, spatial statistics, shape modelling, goodness-of-fit problems, and network analysis. Various highly topical applications are presented as well, especially from biostatistics. The approaches are equally frequentist and Bayesian, a categorization the statistical modelling community has synergetically overcome. The book also features the workshop's keynote contribution on statistical modelling for big and little data, highlighting that both small and large data sets come with their own challenges.

The International Workshop on Statistical Modelling (IWSM) is the annual workshop of the Statistical Modelling Society, with the purpose of promoting important developments, extensions, and applications in statistical modelling, and bringing together statisticians working on related problems from various disciplines. This volume reflects this spirit and contributes to initiating and sustaining discussions about problems in statistical modelling and triggers new developments and ideas in the field.

Contents

REML for two dimensional P splines.- Learning Bayesian networks from ordinal data The Bayesian way.- Latent Dirichlet allocation and hidden Markov models to identify public perception of sustainability in social media data.- Bayesian approaches to model overdispersion in Spatio temporal binomial data.- Elicitation of priors for intervention effects in educational trial data.- Elicitation of priors for intervention effects in educational trial data.- Optimism correction of the AUC with complex survey data.- Statistical models for patient centered outcomes in clinical studies.- Bayesian hidden Markov models for early warning.- A Bayesian Markov-switching for smooth modelling of extreme value distributions.

最近チェックした商品