Number Theory with Computations (Springer Undergraduate Mathematics Series) (2024)

個数:

Number Theory with Computations (Springer Undergraduate Mathematics Series) (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 442 p.
  • 商品コード 9783031638138

Full Description

This introductory text is designed for undergraduate courses in number theory, covering both elementary number theory and analytic number theory. The book emphasises computational aspects, including algorithms and their implementation in Python.

The book is divided into two parts. The first part, on elementary number theory, deals with concepts such as induction, divisibility, congruences, primitive roots, cryptography, and continued fractions. The second part is devoted to analytic number theory and includes chapters on Dirichlet's theorem on primes in arithmetic progressions, the prime number theorem, smooth numbers, and the famous circle method of Hardy and Littlewood. The book contains many topics not often found in introductory textbooks, such as Aubry's theorem, the Tonelli-Shanks algorithm, factorisation methods, continued fraction representations of e, and the irrationality of 휁(3). Each chapter concludes with a summary and notes, as well as numerous exercises.

Assuming only basic calculus for the first part of the book, the second part assumes some knowledge of complex analysis. Familiarity with basic coding syntax will be helpful for the computational exercises.

Contents

Part I Elementary Number Theory.- 1 Basics.- 2 Arithmetic functions I.- 3 Prime numbers: Euclid and Eratosthenes.- 4 Quadratic residues and congruences.- 5 Primitive roots.- 6 Sums of squares.- 7 Continued fractions.- Part II Analytic Number Theory.- 8 Diophantine approximations.- 9 Distribution of prime numbers.- 10 Arithmetic functions II.- 11 Prime number theorem.- 12 Primes in arithmetic progressions.- 13 Smooth numbers.- 14 Circle method.

最近チェックした商品