Explainable Artificial Intelligence : Second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024, Proceedings, Part I (Communications in Computer and Information Science) (2024)

個数:

Explainable Artificial Intelligence : Second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024, Proceedings, Part I (Communications in Computer and Information Science) (2024)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 494 p.
  • 商品コード 9783031637865

Full Description

This four-volume set constitutes the refereed proceedings of the Second World Conference on Explainable Artificial Intelligence, xAI 2024, held in Valletta, Malta, during July 17-19, 2024. 

The 95 full papers presented were carefully reviewed and selected from 204 submissions. The conference papers are organized in topical sections on:

Part I - intrinsically interpretable XAI and concept-based global explainability; generative explainable AI and verifiability; notion, metrics, evaluation and benchmarking for XAI.

Part II - XAI for graphs and computer vision; logic, reasoning, and rule-based explainable AI; model-agnostic and statistical methods for eXplainable AI.

Part III - counterfactual explanations and causality for eXplainable AI; fairness, trust, privacy, security, accountability and actionability in eXplainable AI.

Part IV - explainable AI in healthcare and computational neuroscience; explainable AI for improved human-computer interaction and software engineering for explainability; applications of explainable artificial intelligence.

Contents

.- Intrinsically interpretable XAI and concept-based global explainability.

.- Seeking Interpretability and Explainability in Binary Activated Neural Networks.

.- Prototype-based Interpretable Breast Cancer Prediction Models: Analysis and Challenges.

.- Evaluating the Explainability of Attributes and Prototypes for a Medical Classification Model.

.- Revisiting FunnyBirds evaluation framework for prototypical parts networks.

.- CoProNN: Concept-based Prototypical Nearest Neighbors for Explaining Vision Models.

.- Unveiling the Anatomy of Adversarial Attacks: Concept-based XAI Dissection of CNNs.

.- AutoCL: AutoML for Concept Learning.

.- Locally Testing Model Detections for Semantic Global Concepts.

.- Knowledge graphs for empirical concept retrieval.

.- Global Concept Explanations for Graphs by Contrastive Learning.

.- Generative explainable AI and verifiability.

.- Augmenting XAI with LLMs: A Case Study in Banking Marketing Recommendation.

.- Generative Inpainting for Shapley-Value-Based Anomaly Explanation.

.- Challenges and Opportunities in Text Generation Explainability.

.- NoNE Found: Explaining the Output of Sequence-to-Sequence Models when No Named Entity is Recognized.

.- Notion, metrics, evaluation and benchmarking for XAI.

.- Benchmarking Trust: A Metric for Trustworthy Machine Learning.

.- Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI.

.- Conditional Calibrated Explanations: Finding a Path between Bias and Uncertainty.

.- Meta-evaluating stability measures: MAX-Sensitivity & AVG-Senstivity.

.- Xpression: A unifying metric to evaluate Explainability and Compression of AI models.

.- Evaluating Neighbor Explainability for Graph Neural Networks.

.- A Fresh Look at Sanity Checks for Saliency Maps.

.- Explainability, Quantified: Benchmarking XAI techniques.

.- BEExAI: Benchmark to Evaluate Explainable AI.

.- Associative Interpretability of Hidden Semantics with Contrastiveness Operators in Face Classification tasks.

最近チェックした商品