Regression and Fitting on Manifold-valued Data (2024)

個数:

Regression and Fitting on Manifold-valued Data (2024)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 181 p.
  • 商品コード 9783031617119

Full Description

This book introduces in a constructive manner a general framework for regression and fitting methods for many applications and tasks involving data on manifolds. The methodology has important and varied applications in machine learning, medicine, robotics, biology, computer vision, human biometrics, nanomanufacturing, signal processing, and image analysis, etc.

The first chapter gives  motivation examples, a wide range of applications, raised challenges,  raised challenges, and some concerns.  The second chapter gives a comprehensive exploration and step-by-step illustrations for Euclidean cases. Another dedicated chapter covers  the geometric tools needed for each manifold and provides expressions and key notions for any application for manifold-valued data. 

All loss functions and optimization methods are given as algorithms and can be easily implemented. In particular, many popular manifolds are considered with  derived and specific formulations. The same philosophy is used in all chapters and all novelties are illustrated with intuitive examples. Additionally, each chapter includes simulations and experiments  on real-world problems for understanding and potential extensions for a wide range of applications.

Contents

Introduction.- Spline Interpolation and Fitting in R풏.- Spline Interpolation on the Sphere S풏.- Spline Interpolation on the Special Orthogonal Group 푺푶(풏).- Spline Interpolation on Stiefel and Grassmann manifolds.- Spline Interpolation on the Manifold of Probability Measures.- Spline Interpolation on the Manifold of Probability Density Functions.- Spline Interpolation on Shape Space.- Spline Interpolation on Other Riemannian Manifolds.

最近チェックした商品